Machine Learning Engineer

Graphcore
Cambridge
2 months ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer - London

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Join to apply for the Machine Learning Engineer role at Graphcore

As a Machine Learning Engineer in the Applied AI team at Graphcore, you will contribute to advancing AI technology by developing and optimising AI models tailored to our specialised hardware. Working closely with the Software development and Research teams, you will play a critical role in finding opportunities to innovate and differentiate Graphcore’s technology. We seek engineers with strong technical skills and an understanding of AI model implementation, eager to make a tangible impact in this rapidly evolving field.

The Applied AI team’s role is to be proxies for our customers, we need to understand the latest AI models, applications, and software to ensure that Graphcore’s technology works seamlessly with the AI ecosystem. We build reference applications, contribute to key software libraries e.g. optimising kernels for efficiency on our hardware, and collaborate with the Research team to develop and publish novel ideas in domains such as efficient compute, model scaling and distributed training and inference of AI models for multiple modalities and applications.

If you're excited about advancing the next generation of AI models on cutting-edge hardware, we’d love to hear from you!

Responsibilities And Duties
  • Implement the latest machine learning models and optimise them for performance and accuracy, scaling to 1000s of accelerators.
  • Test and evaluate new internal software releases, provide feedback to software engineering teams, make vital code fixes, and conduct code reviews.
  • Benchmark models and key ML techniques to identify performance bottlenecks and improve model efficiency.
  • Design and conduct experiments on novel AI methods, implement them and evaluate results.
  • Collaborate with Research, Software, and Product teams to define, build, and test Graphcore’s next generation of AI hardware.
  • Engage with AI community and keep in touch with the latest developments in AI.
Candidate ProfileEssential Skills
  • Bachelor/Master's/PhD or equivalent experience in Machine Learning, Computer Science, Maths, Data Science, or related field.
  • Proficiency in deep learning frameworks like PyTorch/JAX.
  • Strong Python software development skills (nice to have C++/other languages).
  • Familiar with deep learning fundamentals: models, optimisation, evaluation and scaling.
  • Capable of designing, executing and reporting from ML experiments.
  • Ability to move quickly in a dynamic environment.
  • Enjoy cross-functional work collaborating with other teams.
  • Strong communicator - able to explain complex technical concepts to different audiences.
Desirable
  • Experience in one or more of: distributed training of large-scale ML models, building production systems with large language models, efficient computing based on low-precision arithmetic, deep learning models including large generative models for language, vision and other modalities.
  • Experience writing C++/Triton/CUDA kernels for performance optimisation of ML models.
  • Have contributed to open-source projects or published research papers in relevant fields.
  • Knowledge of cloud computing platforms.
  • Keen to present, publish and deliver talks in the AI community.
Benefits

In addition to a competitive salary, Graphcore offers flexible working, a generous annual leave policy, private medical insurance and health cash plan, a dental plan, pension (matched up to 5%), life assurance and income protection. We have a generous parental leave policy and an employee assistance programme (which includes health, mental wellbeing, and bereavement support). We offer a range of healthy food and snacks at our central Bristol office and have our own barista bar! We welcome people of different backgrounds and experiences; we’re committed to building an inclusive work environment that makes Graphcore a great home for everyone. We offer an equal opportunity process and understand that there are visible and invisible differences in all of us. We can provide a flexible approach to interview and encourage you to chat to us if you require any reasonable adjustments.


#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Maths for AI Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are a software engineer, data scientist or analyst looking to move into AI or you are a UK undergraduate or postgraduate in computer science, maths, engineering or a related subject applying for AI roles, the maths can feel like the biggest barrier. Job descriptions say “strong maths” or “solid fundamentals” but rarely spell out what that means day to day. The good news is you do not need a full maths degree worth of theory to start applying. For most UK roles like Machine Learning Engineer, AI Engineer, Data Scientist, Applied Scientist, NLP Engineer or Computer Vision Engineer, the maths you actually use again & again is concentrated in a handful of topics: Linear algebra essentials Probability & statistics for uncertainty & evaluation Calculus essentials for gradients & backprop Optimisation basics for training & tuning A small amount of discrete maths for practical reasoning This guide turns vague requirements into a clear checklist, a 6-week learning plan & portfolio projects that prove you can translate maths into working code.

Neurodiversity in AI Careers: Turning Different Thinking into a Superpower

The AI industry moves quickly, breaks rules & rewards people who see the world differently. That makes it a natural home for many neurodivergent people – including those with ADHD, autism & dyslexia. If you’re neurodivergent & considering a career in artificial intelligence, you might have been told your brain is “too much”, “too scattered” or “too different” for a technical field. In reality, many of the strengths that come with ADHD, autism & dyslexia map beautifully onto AI work – from spotting patterns in data to creative problem-solving & deep focus. This guide is written for AI job seekers in the UK. We’ll explore: What neurodiversity means in an AI context How ADHD, autism & dyslexia strengths match specific AI roles Practical workplace adjustments you can ask for under UK law How to talk about your neurodivergence during applications & interviews By the end, you’ll have a clearer picture of where you might thrive in AI – & how to set yourself up for success.

AI Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we head into 2026, the AI hiring market in the UK is going through one of its biggest shake-ups yet. Economic conditions are still tight, some employers are cutting headcount, & AI itself is automating whole chunks of work. At the same time, demand for strong AI talent is still rising, salaries for in-demand skills remain high, & new roles are emerging around AI safety, governance & automation. Whether you are an AI job seeker planning your next move or a recruiter trying to build teams in a volatile market, understanding the key AI hiring trends for 2026 will help you stay ahead. This guide breaks down the most important trends to watch, what they mean in practice, & how to adapt – with practical actions for both candidates & hiring teams.