Machine Learning Engineer

Stott and May
City of London
3 weeks ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

MLOps Engineer

Location: London, UK (Hybrid – 2 days per week in office)

Day Rate: Market rate (Inside IR35

Duration: 6 months

Role Overview

As an MLOps Engineer, you will support machine learning products from inception, working across the full data ecosystem. This includes developing application-specific data pipelines, building CI/CD pipelines that automate ML model training and deployment, publishing model results for downstream consumption, and building APIs to serve model outputs on-demand.

The role requires close collaboration with data scientists and other stakeholders to ensure ML models are production-ready, performant, secure, and compliant.


Key Responsibilities

  • Design, implement, and maintain scalable ML model deployment pipelines (CI/CD for ML)
  • Build infrastructure to monitor model performance, data drift, and other key metrics in production
  • Develop and maintain tools for model versioning, reproducibility, and experiment tracking
  • Optimize model serving infrastructure for latency, scalability, and cost
  • Automate the end-to-end ML workflow, from data ingestion to model training, testing, deployment, and monitoring
  • Collaborate with data scientists to ensure models are production-ready
  • Implement security, compliance, and governance practices for ML systems
  • Support troubleshooting and incident response for deployed ML systems


Required Skills and Experience

  • Strong programming skills in Python; experience with ML libraries such as Snowpark, PySpark, or PyTorch
  • Experience with containerization tools like Docker and orchestration tools like Airflow or Astronomer
  • Familiarity with cloud platforms (AWS, Azure) and ML services (e.g., SageMaker, Vertex AI)
  • Experience with CI/CD pipelines and automation tools such as GitHub Actions
  • Understanding of monitoring and logging tools (e.g., NewRelic, Grafana)


Desirable Skills and Experience

  • Prior experience deploying ML models in production environments
  • Knowledge of infrastructure-as-code tools like Terraform or CloudFormation
  • Familiarity with model interpretability and responsible AI practices
  • Experience with feature stores and model registries

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.

How to Write an AI Job Ad That Attracts the Right People

Artificial intelligence is now embedded across almost every sector of the UK economy. From fintech and healthcare to retail, defence and climate tech, organisations are competing for AI talent at an unprecedented pace. Yet despite the volume of AI job adverts online, many employers struggle to attract the right candidates. Roles are flooded with unsuitable applications, while highly capable AI professionals scroll past adverts that feel vague, inflated or disconnected from reality. In most cases, the issue isn’t a shortage of AI talent — it’s the quality of the job advert. Writing an effective AI job ad requires more care than traditional tech hiring. AI professionals are analytical, sceptical of hype and highly selective about where they apply. A poorly written advert doesn’t just fail to convert — it actively damages your credibility. This guide explains how to write an AI job ad that attracts the right people, filters out mismatches and positions your organisation as a serious employer in the AI space.