Machine Learning Ecosystem Engineer

Cambridge
1 year ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer - Tech Lead

Machine Learning Engineer

Machine Learning Engineer

Job Overview

Arm's Machine Learning group is hiring in western Europe! Want to help show developers the AI capabilities of efficient, next-generation mobile devices? If so, we should talk!

We are a diverse team of hardworking problem solvers located across multiple countries and our flexible working practices enable us to collaborate efficiently across our different regions. We develop examples that we share with the world to highlight the frameworks and techniques available to developers seeking to run AI on Arm.

Responsibilities:

We use our interpersonal and communications skills in direct contact with outstanding companies across multiple technology domains - we forge new paths and assist developers the world over to follow in our footsteps, helping them to bring their visions to bear.

This is an excellent opportunity to contribute to the solutions powering the next generation of mobile applications, portable devices and home automation.

We look forward to receiving your application - and potentially welcoming you to Arm.

Required skills and experience:

Good programming skills - preferably C++ and OOP

Experience of machine learning frameworks such as TensorFlow or PyTorch

A desire to have a positive impact both within our team and the wider Arm ecosystem

"Nice to have" abilities and knowledge:

Programming mobile GPUs (e.g. using shaders, Vulkan) would be a valuable differentiator

Development experience using Kotlin or Java

Android application development using Android Studio

In Return:

In return, the successful candidate will get to influence the next wave of developers on how best to deploy Machine Learning workloads on Arm processors. You'll have the chance to interact with a wide range of engineers from prospective Arm customers through to members of the Arm ecosystem. Your work will be published widely, whether as technical blogs or open source code repositories.

 

#LI-JB1

 

Accommodations at Arm

At Arm, we want our people to Do Great Things. If you need support or an accommodation to Be Your Brilliant Self during the recruitment process, please email . To note, by sending us the requested information, you consent to its use by Arm to arrange for appropriate accommodations. All accommodation requests will be treated with confidentiality, and information concerning these requests will only be disclosed as necessary to provide the accommodation. Although this is not an exhaustive list, examples of support include breaks between interviews, having documents read aloud or office accessibility. Please email us about anything we can do to accommodate you during the recruitment process.

Hybrid Working at Arm

Arm’s approach to hybrid working is designed to create a working environment that supports both high performance and personal wellbeing. We believe in bringing people together face to face to enable us to work at pace, whilst recognizing the value of flexibility. Within that framework, we empower groups/teams to determine their own hybrid working patterns, depending on the work and the team’s needs. Details of what this means for each role will be shared upon application. In some cases, the flexibility we can offer is limited by local legal, regulatory, tax, or other considerations, and where this is the case, we will collaborate with you to find the best solution. Please talk to us to find out more about what this could look like for you.

Equal Opportunities at Arm

Arm is an equal opportunity employer, committed to providing an environment of mutual respect where equal opportunities are available to all applicants and colleagues. We are a diverse organization of dedicated and innovative individuals, and don’t discriminate on the basis of race, color, religion, sex, sexual orientation, gender identity, national origin, disability, or status as a protected veteran

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.

How to Write an AI Job Ad That Attracts the Right People

Artificial intelligence is now embedded across almost every sector of the UK economy. From fintech and healthcare to retail, defence and climate tech, organisations are competing for AI talent at an unprecedented pace. Yet despite the volume of AI job adverts online, many employers struggle to attract the right candidates. Roles are flooded with unsuitable applications, while highly capable AI professionals scroll past adverts that feel vague, inflated or disconnected from reality. In most cases, the issue isn’t a shortage of AI talent — it’s the quality of the job advert. Writing an effective AI job ad requires more care than traditional tech hiring. AI professionals are analytical, sceptical of hype and highly selective about where they apply. A poorly written advert doesn’t just fail to convert — it actively damages your credibility. This guide explains how to write an AI job ad that attracts the right people, filters out mismatches and positions your organisation as a serious employer in the AI space.

Maths for AI Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are a software engineer, data scientist or analyst looking to move into AI or you are a UK undergraduate or postgraduate in computer science, maths, engineering or a related subject applying for AI roles, the maths can feel like the biggest barrier. Job descriptions say “strong maths” or “solid fundamentals” but rarely spell out what that means day to day. The good news is you do not need a full maths degree worth of theory to start applying. For most UK roles like Machine Learning Engineer, AI Engineer, Data Scientist, Applied Scientist, NLP Engineer or Computer Vision Engineer, the maths you actually use again & again is concentrated in a handful of topics: Linear algebra essentials Probability & statistics for uncertainty & evaluation Calculus essentials for gradients & backprop Optimisation basics for training & tuning A small amount of discrete maths for practical reasoning This guide turns vague requirements into a clear checklist, a 6-week learning plan & portfolio projects that prove you can translate maths into working code.