Machine Learning (Algorithm Development)

Bristol
10 months ago
Applications closed

Related Jobs

View all jobs

Machine Learning Research Engineer - NLP / LLM

Machine Learning - (Healthcare) - Fixed Term 12 Months

Machine Learning Engineer

Machine Learning Quant - Start Up

Machine Learning Engineer

Machine Learning Engineer

Our clients algorithms are at the heart of designing advanced guided systems. They are developed throughout the product lifecycle, from initial research to future advancements.

Intelligent Autonomous Systems (IAS) Engineers contribute at every stage of project development, playing a key role in the following areas:

Technical development of specific algorithms or studies for major programs
Feasibility studies, algorithm design, trade-off analysis, trial preparation, trial analysis and reporting, defining architecture, and validating algorithms and models
Conducting technical assessments and investigations into a wide range of issues and developing solutions individually or as part of a team
Collaborating with algorithm users to understand and address their needs, ensuring algorithms are fit for purpose.What we're looking for from you:

A degree or PhD in a related field, or a degree with a strong mathematical foundation and programming skills.
Relevant experience (Post-Doctoral or industrial) in robotics, data fusion, tracking/estimation, pattern recognition, statistical inference, optimization, and machine/deep learning algorithms, along with real-time implementation, validation, and verification.
Proficiency in tools like Matlab, Simulink, Stateflow, Python (including PyTorch, TensorFlow, Open AI-Gym/Universe), or Model-Based Design is desirable.We encourage clients IAS Engineers to develop broad, in-depth knowledge across a variety of fields. Specific knowledge or experience in the following areas would be an advantage:

Robotics, guidance, and autonomous decision-making, such as routing and motion/trajectory planning, optimization, coordinated guidance and control, decision theory, MDPs/POMDPs, specialist systems, game theory, decision support systems, and multi-agent systems.
Data fusion and state estimation/tracking algorithms like Kalman Filtering, multiple-model tracking methods, particle filters, grid-based estimation, Multi-Object-Multi-Sensor Fusion, data association, random finite sets, Bayesian belief networks, and Dempster-Shafer theory of evidence.
Machine Learning for regression, pattern recognition, and discovery, including Gaussian processes, latent variable methods, support vector machines, probabilistic/statistical models, neural networks, Bayesian inference, random forests, novelty detection, and clustering.
Deep Learning such as Deep reinforcement learning, Monte-Carlo tree search, deep regression/classification, deep embeddings, recurrent networks, and natural language processing.
Computer Vision algorithms, including structure from motion, image-based navigation, SLAM, and pose estimation/recovery.

For more detail on this great opportunity, please reach out to me directly

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write an AI Job Ad That Attracts the Right People

Artificial intelligence is now embedded across almost every sector of the UK economy. From fintech and healthcare to retail, defence and climate tech, organisations are competing for AI talent at an unprecedented pace. Yet despite the volume of AI job adverts online, many employers struggle to attract the right candidates. Roles are flooded with unsuitable applications, while highly capable AI professionals scroll past adverts that feel vague, inflated or disconnected from reality. In most cases, the issue isn’t a shortage of AI talent — it’s the quality of the job advert. Writing an effective AI job ad requires more care than traditional tech hiring. AI professionals are analytical, sceptical of hype and highly selective about where they apply. A poorly written advert doesn’t just fail to convert — it actively damages your credibility. This guide explains how to write an AI job ad that attracts the right people, filters out mismatches and positions your organisation as a serious employer in the AI space.

Maths for AI Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are a software engineer, data scientist or analyst looking to move into AI or you are a UK undergraduate or postgraduate in computer science, maths, engineering or a related subject applying for AI roles, the maths can feel like the biggest barrier. Job descriptions say “strong maths” or “solid fundamentals” but rarely spell out what that means day to day. The good news is you do not need a full maths degree worth of theory to start applying. For most UK roles like Machine Learning Engineer, AI Engineer, Data Scientist, Applied Scientist, NLP Engineer or Computer Vision Engineer, the maths you actually use again & again is concentrated in a handful of topics: Linear algebra essentials Probability & statistics for uncertainty & evaluation Calculus essentials for gradients & backprop Optimisation basics for training & tuning A small amount of discrete maths for practical reasoning This guide turns vague requirements into a clear checklist, a 6-week learning plan & portfolio projects that prove you can translate maths into working code.

Neurodiversity in AI Careers: Turning Different Thinking into a Superpower

The AI industry moves quickly, breaks rules & rewards people who see the world differently. That makes it a natural home for many neurodivergent people – including those with ADHD, autism & dyslexia. If you’re neurodivergent & considering a career in artificial intelligence, you might have been told your brain is “too much”, “too scattered” or “too different” for a technical field. In reality, many of the strengths that come with ADHD, autism & dyslexia map beautifully onto AI work – from spotting patterns in data to creative problem-solving & deep focus. This guide is written for AI job seekers in the UK. We’ll explore: What neurodiversity means in an AI context How ADHD, autism & dyslexia strengths match specific AI roles Practical workplace adjustments you can ask for under UK law How to talk about your neurodivergence during applications & interviews By the end, you’ll have a clearer picture of where you might thrive in AI – & how to set yourself up for success.