Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Machine Learning (Algorithm Development)

Bristol
7 months ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer (LLMs & AI Agents)

Machine Learning Engineer

Machine Learning Quant Engineer - Investment banking

Machine Learning Operations Engineer

Machine Learning Operations Engineer

Machine Learning Operations Lead

Our clients algorithms are at the heart of designing advanced guided systems. They are developed throughout the product lifecycle, from initial research to future advancements.

Intelligent Autonomous Systems (IAS) Engineers contribute at every stage of project development, playing a key role in the following areas:

Technical development of specific algorithms or studies for major programs
Feasibility studies, algorithm design, trade-off analysis, trial preparation, trial analysis and reporting, defining architecture, and validating algorithms and models
Conducting technical assessments and investigations into a wide range of issues and developing solutions individually or as part of a team
Collaborating with algorithm users to understand and address their needs, ensuring algorithms are fit for purpose.What we're looking for from you:

A degree or PhD in a related field, or a degree with a strong mathematical foundation and programming skills.
Relevant experience (Post-Doctoral or industrial) in robotics, data fusion, tracking/estimation, pattern recognition, statistical inference, optimization, and machine/deep learning algorithms, along with real-time implementation, validation, and verification.
Proficiency in tools like Matlab, Simulink, Stateflow, Python (including PyTorch, TensorFlow, Open AI-Gym/Universe), or Model-Based Design is desirable.We encourage clients IAS Engineers to develop broad, in-depth knowledge across a variety of fields. Specific knowledge or experience in the following areas would be an advantage:

Robotics, guidance, and autonomous decision-making, such as routing and motion/trajectory planning, optimization, coordinated guidance and control, decision theory, MDPs/POMDPs, specialist systems, game theory, decision support systems, and multi-agent systems.
Data fusion and state estimation/tracking algorithms like Kalman Filtering, multiple-model tracking methods, particle filters, grid-based estimation, Multi-Object-Multi-Sensor Fusion, data association, random finite sets, Bayesian belief networks, and Dempster-Shafer theory of evidence.
Machine Learning for regression, pattern recognition, and discovery, including Gaussian processes, latent variable methods, support vector machines, probabilistic/statistical models, neural networks, Bayesian inference, random forests, novelty detection, and clustering.
Deep Learning such as Deep reinforcement learning, Monte-Carlo tree search, deep regression/classification, deep embeddings, recurrent networks, and natural language processing.
Computer Vision algorithms, including structure from motion, image-based navigation, SLAM, and pose estimation/recovery.

For more detail on this great opportunity, please reach out to me directly

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write an AI CV that Beats ATS (UK examples)

Writing an AI CV for the UK market is about clarity, credibility, and alignment. Recruiters spend seconds scanning the top third of your CV, while Applicant Tracking Systems (ATS) check for relevant skills & recent impact. Your goal is to make both happy without gimmicks: plain structure, sharp evidence, and links that prove you can ship to production. This guide shows you exactly how to do that. You’ll get a clean CV anatomy, a phrase bank for measurable bullets, GitHub & portfolio tips, and three copy-ready UK examples (junior, mid, research). Paste the structure, replace the details, and tailor to each job ad.

AI Recruitment Trends 2025 (UK): What Job Seekers Must Know About Today’s Hiring Process

Summary: UK AI hiring has shifted from titles & puzzle rounds to skills, portfolios, evals, safety, governance & measurable business impact. This guide explains what’s changed, what to expect in interviews, and how to prepare—especially for LLM application, MLOps/platform, data science, AI product & safety roles. Who this is for: AI/ML engineers, LLM engineers, data scientists, MLOps/platform engineers, AI product managers, applied researchers & safety/governance specialists targeting roles in the UK.

Why AI Careers in the UK Are Becoming More Multidisciplinary

Artificial intelligence is no longer a single-discipline pursuit. In the UK, employers increasingly want talent that can code and communicate, model and manage risk, experiment and empathise. That shift is reshaping job descriptions, training pathways & career progression. AI is touching regulated sectors, sensitive user journeys & public services — so the work now sits at the crossroads of computer science, law, ethics, psychology, linguistics & design. This isn’t a buzzword-driven change. It’s happening because real systems are deployed in the wild where people have rights, needs, habits & constraints. As models move from lab demos to products that diagnose, advise, detect fraud, personalise education or generate media, teams must align performance with accountability, safety & usability. The UK’s maturing AI ecosystem — from startups to FTSE 100s, consultancies, the public sector & universities — is responding by hiring multidisciplinary teams who can anticipate social impact as confidently as they ship features. Below, we unpack the forces behind this change, spotlight five disciplines now fused with AI roles, show what it means for UK job-seekers & employers, and map practical steps to future-proof your CV.