Lead Machine Learning Engineer - GenAI

Codesearch AI
10 months ago
Applications closed

Related Jobs

View all jobs

Lead Machine Learning Engineer

Lead Machine Learning Engineer

Lead Machine Learning Engineer

Lead Machine Learning Engineer

Lead Software Engineer - Agentic AI/Machine Learning

Machine Learning Engineer (Databricks)

An unsolved problem in a multi-billion-pound industry


A cash positive, revenue generating start-up with signed commitments


An opportunity to lead the build of a first-of-its kind AI platform utilising SOTA tools and techniques


We are looking for a Lead Machine Learning Engineer – GenAI to build a field-changing, cutting-edge AI platform. In an industry filled with complexity and inefficiency, there’s an opportunity to create an intelligence platform that doesn’t only eliminate waste, but ultimately impacts people in key aspects of everyday life.


Our client is ahead of the curve and fully invested in taking their approach and vision to the next level.


What You’ll Be Doing


Building a multi-model, cutting edge intelligence platform integrating text and image data with state-of-the-art generative models, alongside traditional techniques


Designing a data and document ingestion strategy for multi-format data


Selecting the most appropriate models and approaches, RAG techniques and tools


Design and execute the technical roadmap and architecture to build a scalable platform


Develop and fine-tune LLMs and design multi-step Agentic workflows


Implement feedback loops for model performance evaluation


Provide input on and oversee the development of Robust LLMOps & DevOps practices


Lead and grow the ML team, mentoring and hiring engineers to scale the platform


80/20 split of hands-on work, weighted toward building


What You’ll Need


MSc or PhD in Machine Learning, AI, Computer Science or a related field (or equivalent experience)


Strong foundations in NLP with ideally a minimum of 5 years’ industry experience in AI, Machine

Learning, Reinforcement Learning or similar field


Have experience building and scaling AI-first products, with technical leadership experience, ideally in a start-up environment


Industry experience with LLMs (fine-tuning, optimising, performance evaluation) and Retrieval-


Augmented Generation (RAG) techniques including document linking.


Experience with knowledge graphs and vector databases


Strong experience with Python and modern AI development frameworks


Expertise in MLOps/LLMOps/DevOps including deploying AI solutions at scale.


Knowledge of traditional databases and scalable architecture design


Person - Whilst you’ll be working on cutting edge techniques, we are looking for people that build according to the need


You’ll build with urgency but be pragmatic in your approach


Location - Ideally this role is onsite in Dubai but we will consider remote working from the UK or Europe for the ideal candidate

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Neurodiversity in AI Careers: Turning Different Thinking into a Superpower

The AI industry moves quickly, breaks rules & rewards people who see the world differently. That makes it a natural home for many neurodivergent people – including those with ADHD, autism & dyslexia. If you’re neurodivergent & considering a career in artificial intelligence, you might have been told your brain is “too much”, “too scattered” or “too different” for a technical field. In reality, many of the strengths that come with ADHD, autism & dyslexia map beautifully onto AI work – from spotting patterns in data to creative problem-solving & deep focus. This guide is written for AI job seekers in the UK. We’ll explore: What neurodiversity means in an AI context How ADHD, autism & dyslexia strengths match specific AI roles Practical workplace adjustments you can ask for under UK law How to talk about your neurodivergence during applications & interviews By the end, you’ll have a clearer picture of where you might thrive in AI – & how to set yourself up for success.

AI Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we head into 2026, the AI hiring market in the UK is going through one of its biggest shake-ups yet. Economic conditions are still tight, some employers are cutting headcount, & AI itself is automating whole chunks of work. At the same time, demand for strong AI talent is still rising, salaries for in-demand skills remain high, & new roles are emerging around AI safety, governance & automation. Whether you are an AI job seeker planning your next move or a recruiter trying to build teams in a volatile market, understanding the key AI hiring trends for 2026 will help you stay ahead. This guide breaks down the most important trends to watch, what they mean in practice, & how to adapt – with practical actions for both candidates & hiring teams.

How to Write an AI CV that Beats ATS (UK examples)

Writing an AI CV for the UK market is about clarity, credibility, and alignment. Recruiters spend seconds scanning the top third of your CV, while Applicant Tracking Systems (ATS) check for relevant skills & recent impact. Your goal is to make both happy without gimmicks: plain structure, sharp evidence, and links that prove you can ship to production. This guide shows you exactly how to do that. You’ll get a clean CV anatomy, a phrase bank for measurable bullets, GitHub & portfolio tips, and three copy-ready UK examples (junior, mid, research). Paste the structure, replace the details, and tailor to each job ad.