Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Lead Machine Learning Engineer

Sky
City of London
4 days ago
Create job alert
Overview

We believe in better. And we make it happen.
Better content. Better products. And better careers.
Working in Tech, Product or Data at Sky is about building the next and the new. From broadband to broadcast, streaming to mobile, SkyQ to Sky Glass, we never stand still. We optimise and innovate.
We turn big ideas into the products, content and services millions of people love.
And we do it all right here at Sky.

What you'll do

We are seeking a highly skilled Lead Machine Learning Engineer to advance our personalised recommendation systems by developing efficient, low-latency solutions that serve millions of users globally. The successful candidate will collaborate closely with data scientists, engineers, and product managers to design intelligent content recommendation mechanisms and drive the ongoing advancement of our Machine Learning Platform.

  • Model Development: Design, train, and optimise machine learning models focused on user personalisation, encompassing recommendation engines, ranking algorithms, user segmentation, and content analysis.
  • Data Pipeline Engineering: Construct and maintain robust and scalable data pipelines for feature engineering and model training utilising both structured and unstructured large-scale datasets.
  • Production Deployment: Deploy and supervise ML models in production environments, ensuring high availability, optimal performance, and continued relevance.
  • Experimentation: Lead the design and analysis of A/B tests and offline experiments to evaluate model efficacy and support continuous improvement.
  • Cross-Functional Collaboration: Engage with multidisciplinary teams to align machine learning initiatives with business objectives and user needs.
  • Research & Innovation: Evaluate emerging research in machine learning, deep learning, and personalisation for potential integration within existing systems.
What you'll bring
  • Demonstrated expertise in the full lifecycle of machine learning, from model development and deployment to monitoring and maintenance.
  • Advanced proficiency in Python and knowledge of ML libraries/frameworks (e.g., TensorFlow, PyTorch).
  • Experience with high-volume data processing and real-time streaming architectures.
  • Strong understanding of recommendation system design and personalisation algorithms.
  • Familiarity with Generative AI and its applications in production settings.
  • Exceptional communication and analytical problem-solving skills.
  • Proven successful experience in mentoring less experienced engineers to improve their technical skills
A Typical Day at the Office

When you come in, you can grab a coffee or a bit of breakfast from one of the many (subsidised) cafés or restaurants on site. Settle in at your desk, have a quick look at Slack to see what's happening in the tech communities, then catch up with everyone at the team stand-up. After that, you'll join your team and pick the first task to get cracking on.

At lunchtime, you've got a few choices: head to The Pavilion for a bite with the team, pop to the onsite gym for a quick workout, or join in with a lunchtime community meetup - whatever suits you. Once you're back, you'll carry on working with your team on your current feature.

Later in the afternoon, the team might fancy a quick coffee break before wrapping up the day with a team retrospective.

Global OTT Technology

Our team develops and supports market-leading video streaming services, underpinned by state-of-the-art engineering principles. We do this at huge scale: for over 50 million customers globally, spanning NBCUniversal Peacock in the US and Sky, NOW and SkyShowtime across Europe. No matter the device, the time or the place, we make sure that our diverse audiences can easily find and enjoy whatever they want to watch, choosing from the world's best entertainment, news and sport.

The rewards

There's one thing people can't stop talking about when it comes to #LifeAtSky: the perks. Here's a taster:

  • Sky Q, for the TV you love all in one place
  • The magic of Sky Glass at an exclusive rate
  • A generous pension package
  • Private healthcare
  • Discounted mobile and broadband
  • A wide range of Sky VIP rewards and experiences
Inclusion & how you'll work

We are a Disability Confident Employer, and welcome and encourage applications from all candidates. We will look to ensure a fair and consistent experience for all, and will make reasonable adjustments to support you where appropriate. Please flag any adjustments you need to your recruiter as early as you can.

We've embraced hybrid working and split our time between unique office spaces and the convenience of working from home. You'll find out more about what hybrid working looks like for your role later on in the recruitment process.

Your office space

Osterley

Our Osterley Campus is a 10-minute walk from Syon Lane train station. Or you can hop on one of our free shuttle buses that run to and from Osterley, Gunnersbury, Ealing Broadway and South Ealing tube stations. There are also plenty of bike shelters and showers.

On campus, you'll find 13 subsidised restaurants, cafes, and a Waitrose. You can keep in shape at our subsidised gym, catch the latest shows and movies at our cinema, get your car washed, and even get pampered at our beauty salon.

We'd love to hear from you

Inventive, forward-thinking minds come together to work in Tech, Product and Data at Sky. It's a place where you can explore what if, how far, and what next.

But better doesn't stop at what we do, it's how we do it, too. We embrace each other's differences. We support our community and contribute to a sustainable future for our business and the planet.

If you believe in better, we'll back you all the way.

Just so you know: if your application is successful, we'll ask you to complete a criminal record check. And depending on the role you have applied for and the nature of any convictions you may have, we might have to withdraw the offer.


#J-18808-Ljbffr

Related Jobs

View all jobs

Lead Machine Learning Engineer

Lead Machine Learning Engineer

Lead Machine Learning Engineer

Lead Machine Learning Engineer

Lead Machine Learning Engineer

Lead Machine Learning Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write an AI CV that Beats ATS (UK examples)

Writing an AI CV for the UK market is about clarity, credibility, and alignment. Recruiters spend seconds scanning the top third of your CV, while Applicant Tracking Systems (ATS) check for relevant skills & recent impact. Your goal is to make both happy without gimmicks: plain structure, sharp evidence, and links that prove you can ship to production. This guide shows you exactly how to do that. You’ll get a clean CV anatomy, a phrase bank for measurable bullets, GitHub & portfolio tips, and three copy-ready UK examples (junior, mid, research). Paste the structure, replace the details, and tailor to each job ad.

AI Recruitment Trends 2025 (UK): What Job Seekers Must Know About Today’s Hiring Process

Summary: UK AI hiring has shifted from titles & puzzle rounds to skills, portfolios, evals, safety, governance & measurable business impact. This guide explains what’s changed, what to expect in interviews, and how to prepare—especially for LLM application, MLOps/platform, data science, AI product & safety roles. Who this is for: AI/ML engineers, LLM engineers, data scientists, MLOps/platform engineers, AI product managers, applied researchers & safety/governance specialists targeting roles in the UK.

Why AI Careers in the UK Are Becoming More Multidisciplinary

Artificial intelligence is no longer a single-discipline pursuit. In the UK, employers increasingly want talent that can code and communicate, model and manage risk, experiment and empathise. That shift is reshaping job descriptions, training pathways & career progression. AI is touching regulated sectors, sensitive user journeys & public services — so the work now sits at the crossroads of computer science, law, ethics, psychology, linguistics & design. This isn’t a buzzword-driven change. It’s happening because real systems are deployed in the wild where people have rights, needs, habits & constraints. As models move from lab demos to products that diagnose, advise, detect fraud, personalise education or generate media, teams must align performance with accountability, safety & usability. The UK’s maturing AI ecosystem — from startups to FTSE 100s, consultancies, the public sector & universities — is responding by hiring multidisciplinary teams who can anticipate social impact as confidently as they ship features. Below, we unpack the forces behind this change, spotlight five disciplines now fused with AI roles, show what it means for UK job-seekers & employers, and map practical steps to future-proof your CV.