Lead Machine Learning Engineer

London
9 months ago
Applications closed

Related Jobs

View all jobs

Lead Machine Learning Engineer

Lead Machine Learning Engineer

Lead Machine Learning Engineer

Lead Machine Learning Engineer

Lead Machine Learning Engineer

Lead Machine Learning Engineer

Lead ML Engineer
London - Hybrid (1 day per week in office)
£80,000 - £100,000 DOE + Bonus (up to 15%) + Excellent Pension + Car Scheme + Technology Benefits + EAP Programme + Flexible working

This is an incredible opportunity for a Lead ML Engineer to join a fast paced and forward-thinking business always looking to innovate and lead from the front in the technology world.

The company are a leading organisation in the energy sector, dedicated to delivering innovative solutions and improving operational efficiency. As part of their Data Science team, you will be at the forefront of cutting-edge projects, helping to shape the future of data-driven decision-making and machine learning infrastructure.

In this role, you will lead machine learning projects from concept to production, develop platform tools, and collaborate with data scientists to build data pipelines. You'll mentor junior team members, work with IT teams to advance projects, and improve deployment processes. Additionally, you'll design and maintain cloud infrastructure, ensure high-quality code, and participate in code reviews.

The ideal candidate will have proven experience in a similar role in some combination of Software, Data or DevOps and strong experience working with ML models. You will be an expert with Python and associated libraries (Pandas, scikit-learn etc.), have strong Azure DevOps exposure (Terraform, Docker, Kubernetes) and high proficiency in SQL.

An incredible opportunity for a confident and commercial ML Engineer to lead from the front working with cutting edge technology and driving company growth.

The Role:

Lead machine learning projects from concept to production.
Develop platform tools and collaborate with data scientists to build data pipelines.
Mentor junior team members and support their technical growth.
Work closely with IT teams to advance project goals and improve deployment processes.
Design and maintain cloud infrastructure to support machine learning initiatives.
The Person:

Proficiency in Python, including libraries such as Pandas and scikit-learn, and strong SQL skills.
Deep understanding of software engineering best practices
Experience with tools like Azure, Azure ML, GitHub Actions, Terraform, Packer, Airflow, Docker, and Kubernetes
Expertise in Linux/Windows VM administration.

Reference Number: BBBH(phone number removed)

To apply for this role or to be considered for further roles, please click "Apply Now" or contact Ryan McIntyre at Rise Technical Recruitment.

Rise Technical Recruitment Ltd acts an employment agency for permanent roles and an employment business for temporary roles.

The salary advertised is the bracket available for this position. The actual salary paid will be dependent on your level of experience, qualifications and skill set. We are an equal opportunities employer and welcome applications from all suitable candidates

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.

How to Write an AI Job Ad That Attracts the Right People

Artificial intelligence is now embedded across almost every sector of the UK economy. From fintech and healthcare to retail, defence and climate tech, organisations are competing for AI talent at an unprecedented pace. Yet despite the volume of AI job adverts online, many employers struggle to attract the right candidates. Roles are flooded with unsuitable applications, while highly capable AI professionals scroll past adverts that feel vague, inflated or disconnected from reality. In most cases, the issue isn’t a shortage of AI talent — it’s the quality of the job advert. Writing an effective AI job ad requires more care than traditional tech hiring. AI professionals are analytical, sceptical of hype and highly selective about where they apply. A poorly written advert doesn’t just fail to convert — it actively damages your credibility. This guide explains how to write an AI job ad that attracts the right people, filters out mismatches and positions your organisation as a serious employer in the AI space.

Maths for AI Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are a software engineer, data scientist or analyst looking to move into AI or you are a UK undergraduate or postgraduate in computer science, maths, engineering or a related subject applying for AI roles, the maths can feel like the biggest barrier. Job descriptions say “strong maths” or “solid fundamentals” but rarely spell out what that means day to day. The good news is you do not need a full maths degree worth of theory to start applying. For most UK roles like Machine Learning Engineer, AI Engineer, Data Scientist, Applied Scientist, NLP Engineer or Computer Vision Engineer, the maths you actually use again & again is concentrated in a handful of topics: Linear algebra essentials Probability & statistics for uncertainty & evaluation Calculus essentials for gradients & backprop Optimisation basics for training & tuning A small amount of discrete maths for practical reasoning This guide turns vague requirements into a clear checklist, a 6-week learning plan & portfolio projects that prove you can translate maths into working code.