Lead Machine Learning Engineer

London
3 weeks ago
Applications closed

Related Jobs

View all jobs

Lead Machine Learning Engineer

Machine Learning Engineer (KTP Associate position)

Lead AI/ML Engineer

Research Engineer, Data (Foundational Research, Machine Learning)

Lead Software Engineer (Machine Learning)

Lead Data Engineer

Lead ML Engineer
London - Hybrid
£80,000 - £95,000 + Bonus + Pension + Car Scheme + Technology Benefits + EAP Programme + Flexible working

This is an incredible opportunity for a Lead ML Engineer to join a fast paced and forward-thinking business always looking to innovate and lead from the front in the technology world.

The company are a leading organisation in the energy sector, dedicated to delivering innovative solutions and improving operational efficiency. As part of their Data Science team, you will be at the forefront of cutting-edge projects, helping to shape the future of data-driven decision-making and machine learning infrastructure.

In this role, you will lead machine learning projects from concept to production, develop platform tools, and collaborate with data scientists to build data pipelines. You'll mentor junior team members, work with IT teams to advance projects, and improve deployment processes. Additionally, you'll design and maintain cloud infrastructure, ensure high-quality code, and participate in code reviews.

The ideal candidate will have hands-on industry experience in software engineering, machine learning engineering, data science, DevOps, and cloud infrastructure. They will be highly proficient in Python, including libraries such as Pandas and scikit-learn, and possess strong SQL skills. A deep understanding of software engineering best practices and hands-on experience with tools like Azure, GitHub Actions, Terraform, Packer, Airflow, Docker, Kubernetes, and Linux/Windows VM administration is essential.

An incredible opportunity for a confident and commercial ML Engineer to lead from the front working with cutting edge technology and driving company growth.

The Role:

Lead machine learning projects from concept to production.
Develop platform tools and collaborate with data scientists to build data pipelines.
Mentor junior team members and support their technical growth.
Work closely with IT teams to advance project goals and improve deployment processes.
Design and maintain cloud infrastructure to support machine learning initiatives.
Ensure high-quality code and actively participate in code reviews to maintain code quality.
The Person:

Hands-on industry experience in software engineering, machine learning engineering, data science, DevOps, and cloud infrastructure.
Proficiency in Python, including libraries such as Pandas and scikit-learn, and strong SQL skills.
Deep understanding of software engineering best practices.
Experience with tools like Azure, GitHub Actions, Terraform, Packer, Airflow, Docker, and Kubernetes.
Expertise in Linux/Windows VM administration.
Solid knowledge of modern security and networking principles

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

10 Ways AI Pros Stay Inspired: Boost Creativity with Side Projects, Hackathons & More

In the rapidly evolving world of Artificial Intelligence (AI), creativity and innovation are critical. AI professionals—whether data scientists, machine learning engineers, or research scientists—must constantly rejuvenate their thinking to solve complex challenges. But how exactly do these experts stay energised and creative in their work? The answer often lies in a combination of strategic habits, side projects, hackathons, Kaggle competitions, reading the latest research, and consciously stepping out of comfort zones. This article will explore why these activities are so valuable, as well as provide actionable tips for anyone looking to spark new ideas and enrich their AI career. Below, we’ll delve into tried-and-tested strategies that AI pros employ to drive innovation, foster creativity, and maintain an inspired outlook in an industry that can be both exhilarating and daunting. Whether you’re just starting your AI journey or you’re an experienced professional aiming to sharpen your skills, these insights will help you break out of ruts, discover fresh perspectives, and bring your boldest ideas to life.

Top 10 AI Career Myths Debunked: Key Facts for Aspiring Professionals

Artificial Intelligence (AI) is one of the most dynamic and rapidly growing sectors in technology today. The lure of AI-related roles continues to draw a diverse range of job seekers—from seasoned software engineers to recent graduates in fields such as mathematics, physics, or data science. Yet, despite AI’s growing prominence and accessibility, there remains a dizzying array of myths surrounding careers in this field. From ideas about requiring near-superhuman technical prowess to assumptions that machines themselves will replace these jobs, the stories we hear sometimes do more harm than good. In reality, the AI job market offers far more opportunities than the alarmist headlines and misconceptions might suggest. Here at ArtificialIntelligenceJobs.co.uk, we witness firsthand the myriad roles, backgrounds, and success stories that drive the industry forward. In this blog post, we aim to separate fact from fiction—taking the most pervasive myths about AI careers and debunking them with clear, evidence-based insights. Whether you are an established professional considering a career pivot into data science, or a student uncertain about whether AI is the right path, this article will help you gain a realistic perspective on what AI careers entail. Let’s uncover the truth behind the most common myths and discover the actual opportunities and realities you can expect in this vibrant sector.

Global vs. Local: Comparing the UK AI Job Market to International Landscapes

How to navigate salaries, opportunities, and work culture in AI across the UK, the US, Europe, and Asia Artificial Intelligence (AI) has evolved from a niche field of research to an integral component of modern industries—powering everything from chatbots and driverless cars to sophisticated data analytics in finance and healthcare. The job market for AI professionals is consequently booming, with thousands of new positions posted each month worldwide. In this blog post, we will explore how the UK’s AI job market compares to that of the United States, Europe, and Asia, delving into differences in job demand, salaries, and workplace culture. Additionally, we will provide insights for candidates considering remote or international opportunities. Whether you are a freshly qualified graduate in data science, an experienced machine learning engineer, or a professional from a parallel domain looking to transition into AI, understanding the global vs. local landscape can help you make an informed decision about your career trajectory. As the demand for artificial intelligence skills grows—and borders become more porous with hybrid and remote work—the possibilities for ambitious job-seekers are expanding exponentially. This article will offer a comprehensive look at the various regional markets, exploring how the UK fares in comparison to other major AI hubs. We’ll also suggest factors to consider when choosing where in the world to work, whether physically or remotely. By the end, you’ll have a clearer picture of the AI employment landscape, and you’ll be better prepared to carve out your own path.