National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Lead Machine Learning Engineer

Gravitas Recruitment Group (Global) Ltd
Leeds
5 months ago
Applications closed

Related Jobs

View all jobs

Lead Machine Learning Engineer (Agentic Infrastructure)

Applied AI ML Lead - Senior Machine Learning Engineer - Commercial and Investment Bank

Applied AI ML Lead - Senior Machine Learning Engineer - Commercial and Investment Bank

Machine Learning Engineer

Principal Machine Learning Engineer

Founding Machine Learning Engineer

Machine Learning Engineer | Gen AI | LLM | RAG | Financial | FinTech | Wealth | Python


Gravitas has partnered with a well funded FinTech Start-Up specialising in building Gen AI financial advisory solutions for enterprise businesses.


As theLead Machine Learning Engineerspecialising inGenerative AI, you will be at the helm of cutting-edge AI projects that will fundamentally reshape how financial decisions are made. Your work will directly influence how personalised, real-time financial insights are delivered, enabling smarter, more efficient advisory services and improving the overall customer experience. This is a unique opportunity to lead transformative AI solutions in a fast-growing sector.


Position:Lead Machine Learning Engineer

Salary:£60,000 - £100,000

Benefits:Equity + Benefits package

Location:UK, Remote (occasional travel to London to be on client site)

Sector:FinTech


The day to day:

  • Lead the development of innovativeGenerative AI modelstailored to the wealth management industry.
  • Drive theoptimisation of large language models (LLMs)to extract deeper insights and enhance prediction capabilities for financial applications.
  • Spearhead the implementation ofRetrieval-Augmented Generation (RAG)systems, improving the AI’s performance in specific financial scenarios.
  • Lead initiatives formodel fine-tuning, ensuring generative models perform optimally in real-world financial contexts.
  • Design and build scalableAI pipelinescapable of managing and processing complex financial data.
  • Innovate in the field ofConversational AI, enhancing client-advisor interactions with intelligent, real-time decision-making systems.
  • Develop and deployAI-driven systemscapable of real-time financial data analysis and actionable insights.
  • Write clean, maintainable, and efficient code, establishing best practices for AI infrastructure within the company.
  • Collaborate closely with cross-functional teams to integrate AI solutions into the core platform.


Essential skills / experience:

  • 3+ yearsof experience as aMachine Learning Engineer, with a strong track record of impactful AI projects.
  • Expertise inGenerative AI, with at least1 yearof hands-on experience working with generative models.
  • Strong experience withRetrieval-Augmented Generation (RAG)and other cutting-edge AI techniques.
  • Proven success in fine-tuning models for specialized applications, particularly in financial services or data-driven domains.
  • Advanced proficiency inPython
  • Strong experience withMLOps,ML pipelines, and deployment on cloud platforms likeAWS,GCP, orAzure.
  • Solid foundation in software engineering principles, ensuring that code is efficient, scalable, and maintainable.
  • Worked in aproduct basedcompany


Familiarity with theFinTechorwealth managementsectors, and an understanding of the industry's unique challenges and opportunities, but this is not essential


Nest steps / Interview process:

  • We will be meeting with the hiring team on Wednesday 15th January to discuss suitable candidates
  • The interview process consists of 3 stages, Initial call, technical interview and in-person cultural fit


Please apply now to be considered and the relevant consultant will be int touch.

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Part-Time Study Routes That Lead to AI Jobs: Evening Courses, Bootcamps & Online Masters

Artificial intelligence (AI) is reshaping industries at an unprecedented pace. From automating mundane tasks in finance to driving innovation in healthcare diagnostics, the demand for AI-skilled professionals is skyrocketing. In the United Kingdom alone, AI is forecast to deliver over £400 billion to the economy by 2030 and generate millions of new jobs across sectors. Yet, for many ambitious professionals, taking time away from work to upskill can feel like an impossible ask. Thankfully, part-time learning options have proliferated: evening courses, intensive bootcamps and flexible online master’s programmes empower you to learn AI while working. This comprehensive guide explores every route—from short tasters to deep-dive MScs—showcasing providers, course formats, funding options and practical tips. Whether you’re a career changer, a busy manager or a self-taught developer keen to go further, you’ll discover a pathway to fit your schedule, budget and goals.

Top 10 Mistakes Candidates Make When Applying for AI Jobs—And How to Avoid Them

Avoid the biggest pitfalls when applying for artificial intelligence jobs. Discover the top 10 mistakes AI candidates make—plus expert tips and internal resources to land your dream role. Introduction The market for AI jobs in the UK is booming. From computer-vision start-ups in Cambridge to global fintechs in London searching for machine-learning engineers, demand for artificial-intelligence talent shows no sign of slowing. But while vacancies grow, so does the competition. Recruiters tell us they reject up to 75 per cent of applications before shortlisting—often for mistakes that could have been fixed in minutes. To help you stand out, we’ve analysed thousands of recent applications posted on ArtificialIntelligenceJobs.co.uk, spoken with in-house talent teams and independent recruiters, and distilled their feedback into a definitive “top mistakes” list. Below you’ll find the ten most common errors, along with actionable fixes, keyword-rich guidance and handy internal links to deeper resources on our site. Bookmark this page before you hit “Apply”—it could be the difference between the “reject” pile and a career-defining interview.