Lead Engineer, MLOps (London)

Code and Theory
London
1 month ago
Create job alert

We are seeking an experienced Lead ML+DevOps Engineer. The ideal candidate will have strong expertise in cloud deployment, containerization, and related technologies, and will play a crucial role in the scalability and reliability of our AI/ML infrastructure.

WHAT YOU'LL NEED

Extensive experience in deploying machine learning models to cloud environments


Strong expertise in Docker container orchestration
Proficiency in Terraform for infrastructure as code (IaC) and cloud resource management
Hands-on experience with streaming data platforms (e.g., Kafka, Kinesis)
Solid understanding of data cleaning, transformation, and ETL processes
Experience with CI/CD tools and pipelines (e.g., Jenkins, GitLab CI)
Strong programming skills in Python. Familiarity with ML frameworks (e.g., TensorFlow, PyTorch) is a plus
Excellent problem-solving skills and the ability to think critically and creatively
Strong communication skills with the ability to convey technical concepts to non-technical stakeholders

ABOUT US


Born in 2001, Code and Theory is a digital-first creative agency that sits at the center of creativity and technology. We pride ourselves on not only solving consumer and business problems, but also helping to establish new capabilities for our clients. With a global client roster of Fortune 100s and start-ups alike, we crave the hardest problems to solve. We have teams distributed across North America, South America, Europe, and Asia. The Code and Theory global network of agencies is growing and includes Kettle, Instrument, Left Field Labs, Create Group, Mediacurrent, Rhythm, and TrueLogic.


Striving never to be pigeonholed, we work across every major category: from tech to CPG, financial services to travel & hospitality, government and education to media and publishing. We value the collaboration with our client partners, including but not limited to Adidas, Amazon, Con Edison, Diageo, EY, J.P. Morgan Chase, Lenovo, Marriott, Mars, Microsoft, Thomson Reuters, and TikTok.


The Code and Theory network is comprised of nearly 2,000 people with 50% engineers and 50% creative talent. We’re always on the lookout for smart, driven, and forward-thinking people to join our team.

Related Jobs

View all jobs

Principal Machine Learning Engineer

Lead AI Engineer — Production ML & MLOps Leader

Lead AI Engineer — Production ML & MLOps Leader

Lead AI Engineer — Production ML & MLOps Leader

Staff/Lead Python Engineer/MLOps (async)

Lead Software Engineer - Agentic AI/Machine Learning

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write an AI Job Ad That Attracts the Right People

Artificial intelligence is now embedded across almost every sector of the UK economy. From fintech and healthcare to retail, defence and climate tech, organisations are competing for AI talent at an unprecedented pace. Yet despite the volume of AI job adverts online, many employers struggle to attract the right candidates. Roles are flooded with unsuitable applications, while highly capable AI professionals scroll past adverts that feel vague, inflated or disconnected from reality. In most cases, the issue isn’t a shortage of AI talent — it’s the quality of the job advert. Writing an effective AI job ad requires more care than traditional tech hiring. AI professionals are analytical, sceptical of hype and highly selective about where they apply. A poorly written advert doesn’t just fail to convert — it actively damages your credibility. This guide explains how to write an AI job ad that attracts the right people, filters out mismatches and positions your organisation as a serious employer in the AI space.

Maths for AI Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are a software engineer, data scientist or analyst looking to move into AI or you are a UK undergraduate or postgraduate in computer science, maths, engineering or a related subject applying for AI roles, the maths can feel like the biggest barrier. Job descriptions say “strong maths” or “solid fundamentals” but rarely spell out what that means day to day. The good news is you do not need a full maths degree worth of theory to start applying. For most UK roles like Machine Learning Engineer, AI Engineer, Data Scientist, Applied Scientist, NLP Engineer or Computer Vision Engineer, the maths you actually use again & again is concentrated in a handful of topics: Linear algebra essentials Probability & statistics for uncertainty & evaluation Calculus essentials for gradients & backprop Optimisation basics for training & tuning A small amount of discrete maths for practical reasoning This guide turns vague requirements into a clear checklist, a 6-week learning plan & portfolio projects that prove you can translate maths into working code.

Neurodiversity in AI Careers: Turning Different Thinking into a Superpower

The AI industry moves quickly, breaks rules & rewards people who see the world differently. That makes it a natural home for many neurodivergent people – including those with ADHD, autism & dyslexia. If you’re neurodivergent & considering a career in artificial intelligence, you might have been told your brain is “too much”, “too scattered” or “too different” for a technical field. In reality, many of the strengths that come with ADHD, autism & dyslexia map beautifully onto AI work – from spotting patterns in data to creative problem-solving & deep focus. This guide is written for AI job seekers in the UK. We’ll explore: What neurodiversity means in an AI context How ADHD, autism & dyslexia strengths match specific AI roles Practical workplace adjustments you can ask for under UK law How to talk about your neurodivergence during applications & interviews By the end, you’ll have a clearer picture of where you might thrive in AI – & how to set yourself up for success.