Lead Data Scientist - UK 12 Month FTC

CI&T Software S.A.
London
9 months ago
Applications closed

Related Jobs

View all jobs

Lead Data Scientist

Lead Data Scientist

Lead Data Scientist

Lead Data Scientist

Lead Data Scientist

Lead Data Scientist

We are tech transformation specialists, uniting humanexpertise with AI to create scalable tech solutions. With over6,500 CI&Ters around the world, we’ve built partnerships withmore than 1,000 clients during our 30 years of history. ArtificialIntelligence is our reality. When applying for one of ourpositions, you’re agreeing to the use of AI in the early phases ofthe selection process, where your profile will be evaluated by ourvirtual assistant. For more information, access our opportunities’page. General Description: We are looking for scientists who arepassionate about data and are eager to tackle big challenges usingData Science and Machine Learning. The main focus of this role isto solve non-trivial business problems in Fortune 500 companies.This person will mostly work with a mix of structured andunstructured data, using scientific methods and state-of-the-arttechniques and tools to help our customers achieve their businessobjectives. Responsibilities: 1. Understand complex businessproblems and translate them into structured data problems. 2.Capture and explore complex data sets (structured and unstructureddata). 3. Prototype models of different complexity (businessanalysis, statistical models, machine learning) using modern datascience tools (Notebooks, Clouds). 4. Design and implement machinelearning models, metrics, and apply feature engineering techniquesto customer problems. 5. Support pre-sales in businessopportunities and the engineering teams in the implementation ofproduction-ready solutions involving machine learning. 6. Evaluatehypotheses and the impact of machine learning algorithms on keybusiness metrics. Simulations and offline/online experimentation(via A/B tests) is part of the game. 7. Research and understanduser behavior patterns, such as user engagement and segmentation,using machine learning models to help test hypotheses. 8.Communicate findings effectively to an audience of engineers andexecutives. Required Qualifications: 1. Bachelor’s Degree inComputer Science/Engineering, Applied Math, Statistics, Physics, orother related quantitative areas. 2. Advanced oral and writtencommunication skills in English. 3. Ability to understandmathematical models and algorithms in research papers, and toimplement them into running software for Proof-of-Concepts andprojects. 4. Ability to explore big data without a specific problemdefined, in order to come up with the right questions and provideinteresting findings. 5. Ability to provide visibility of theprogress of tasks to the team by means of small deliverables. 6.Proficient in computer languages like Python or R, and SQL, makinguse of the best frameworks for machine learning pipelines, datavisualization, manipulation, model training and evaluation, andmodel deployment. 7. Experience with common feature engineeringtechniques and machine learning algorithms for Supervised andUnsupervised Learning, like Regression, Classification, Clustering,Dimensionality Reduction, Association Rules, Ranking, andRecommender Systems. 8. Experience with Natural Language Processing(NLP and NLU). 9. Experience using Generative AI systems (e.g.,ChatGPT) and best practices (e.g., Prompt Engineering). 10.Understanding the key concepts on how to apply Generative AI inbuilding RAG solutions (embeddings, dense search). 11. Businesssense and consulting behavior to identify and breakdown problems,define and evaluate hypotheses. 12. Think critically and act in adetail-oriented fashion while keeping the "big picture" in mind.13. Ability to provide creative and innovative approaches toproblem solving. 14. Ability to work independently and within acollaborative team environment. Desired Qualifications: 1. Mastersor PhD in Machine Learning / Data Mining / Statistics. 2.Experience in building advanced Information Retrieval or QuestionAnswering systems using NLP and Generative AI techniques (e.g., RAGand GraphRAG). 3. Experience with construction and integration ofKnowledge Graphs. Collaboration is our superpower, diversity unitesus, and excellence is our standard. We value diverse identities andlife experiences, fostering a diverse, inclusive, and safe workenvironment. We encourage applications from diverse andunderrepresented groups to our job positions.#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.