Lead Data Scientist, Machine Learning Engineer 2025- UK

Aimpoint Digital
London
2 months ago
Create job alert

Aimpoint Digital is a premier analytics consulting firm with a mission to drive business value for clients through expertise in data strategy, data analytics, decision sciences, and data engineering and infrastructure. This position is within our decision sciences practice which focuses on delivering solutions via machine learning and statistical modelling. 


What you will do 


As a part of Aimpoint Digital, you will focus on enabling clients to get the most out of their data. You will work with all levels of the client organization to build value driving solutions that extract insights and then train them on how to manage and maintain these solutions. Typical solutions will utilize machine learning, artificial intelligence, statistical analysis, automation, optimization, and/or data visualizations. As a Lead Data Scientist, you will be expected to work independently on client engagements, take part in the development of our practice, aid in business development, and contribute innovative ideas and initiatives to our company. As a Lead Data Scientist you will: 


  • Become a trusted advisor working with clients to design end-to-end analytical solutions 
  • Work independently to solve complex data science use-cases across various industries 
  • Design and develop feature engineering pipelines, build ML & AI infrastructure, deploy models, and orchestrate advanced analytical insights 
  • Write code in SQL, Python, and Spark following software engineering best practices 
  • Collaborate with stakeholders and customers to ensure successful project delivery 


Who we are looking for 


We are looking for collaborative individuals who want to drive value, work in a fast-paced environment, and solve real business problems.  You are a coder who writes efficient and optimized code leveraging key Databricks features. You are a problem-solver who can deliver simple, elegant solutions as well as cutting-edge solutions that, regardless of complexity, your clients can understand, implement, and maintain. You genuinely think about the end-to-end machine learning pipeline as you generate robust solutions. You are both a teacher and a student as we enable our clients, upskill our teammates, and learn from one another. You want to drive impact for your clients and do so through thoughtfulness, prioritization, and seeing a solution through from brainstorming to deployment. In particular you have these traits: 


  • Degree in Computer Science, Engineering, Mathematics, or equivalent experience.  
  • Experience with building high quality Data Science models to solve a client's business problems  
  • Experience with managing stakeholders and collaborating with customers  
  • Strong written and verbal communication skills required  
  • Ability to manage an individual workstream independently  
  • 3+ years of experience developing and deploying ML models in any platform (Azure, AWS, GCP, Databricks etc.)  
  • Ability to apply data science methodologies and principles to real life projects  
  • Expertise in software engineering concepts and best practices  
  • Self-starter with excellent communication skills, able to work independently, and lead projects, initiatives, and/or people  
  • Willingness to travel. 


Want to stand out? 


  • Consulting Experience 
  • Databricks Machine Learning Associate or Machine Learning Professional Certification. 
  • Familiarity with traditional machine learning tools such as Python, SKLearn, XGBoost, SparkML, etc. 
  • Experience with deep learning frameworks like TensorFlow or PyTorch. 
  • Knowledge of ML model deployment options (e.g., Azure Functions, FastAPI, Kubernetes) for real-time and batch processing. 
  • Experience with CI/CD pipelines (e.g., DevOps pipelines, GitHub Actions). 
  • Knowledge of infrastructure as code (e.g., Terraform, ARM Template, Databricks Asset Bundles). 
  • Understanding of advanced machine learning techniques, including graph-based processing, computer vision, natural language processing, and simulation modeling. 
  • Experience with generative AI and LLMs, such as LLamaIndex and LangChain 
  • Understanding of MLOps or LLMOps. 
  • Familiarity with Agile methodologies, preferably Scrum 


We are actively seeking candidates for full-time, remote work within the UK. 





Related Jobs

View all jobs

Head of Data Science

Data Scientist Lead - Employee Platforms

Senior Data Scientist - Operational Research & Optimisation

Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Engineer World’s Fair 2025: The Complete UK Guide to June’s Unmissable AI Engineering Event

If 2024 was the year every product team rushed to bolt an LLM onto their roadmap, 2025 is when the craft of AI engineering finally takes centre stage. From rapid-fire prompt iterations to robust eval pipelines, the discipline now demands the same rigour we once reserved for cloud infra or mobile apps. That is precisely why the AI Engineer World’s Fair, 3–5 June 2025 in San Francisco, matters more than any keynote or press release: it is the one place where the movers, makers and maintainers of production-grade AI swap battle-tested patterns in person. For UK technologists—and the recruiters who hire them—the Fair offers a rare chance to compress a year’s worth of learning, networking and tooling discovery into three intense days. Whether you are scaling RAG systems on Azure, bootstrapping an agentic start-up from your kitchen table, or simply hunting for your first AI engineer job, the sessions, workshops and hallway conversations can tilt your career trajectory. The guide that follows distils everything you need to know—programme highlights, travel hacks, ticket tips and post-event ROI—so you can decide if a flight across the Atlantic (or a virtual pass) is the smartest investment you’ll make this year.

How to Advertise AI Jobs and List AI Vacancies: Advanced Recruitment Strategies for 2025

In a landscape where artificial intelligence (AI) is rapidly transforming industries—from healthcare and finance to manufacturing and creative fields—employers are in stiff competition to secure the best AI talent. Whether you’re a start-up looking for your first machine learning engineer or a global enterprise planning an AI research lab, knowing how to advertise AI jobs effectively has never been more critical. Below, you’ll find in-depth strategies for crafting compelling AI job adverts, optimising your recruitment funnel, and showcasing your organisation as an employer of choice for top AI specialists. We’ll also explore the importance of salary transparency, the best channels for promoting your AI vacancies, and advanced techniques for nurturing a culture of innovation.

AI Training Jobs: Your Comprehensive Guide to Launching a High-Potential Career

Artificial Intelligence (AI) has evolved from a futuristic concept to a core component of modern business strategy. As organisations increasingly embrace AI-driven systems to stay competitive, the demand for qualified professionals who can develop, implement, and train AI models has skyrocketed. In the UK—and indeed worldwide—there is a pressing need for skilled experts who understand the nuances of AI, from algorithm design to ethical considerations. For anyone seeking to enter this exciting field or pivot into a role focusing on AI training, the opportunities are abundant. This in-depth blog post will explore everything you need to know about AI training jobs, the essential skills you’ll need, the current employment landscape in the UK, and how to future-proof your career in AI.