Lead Data Scientist Bristol

Datatech Analytics Careers
Bristol
1 year ago
Applications closed

Related Jobs

View all jobs

Principal Data Scientist

Data Scientist

Data Scientist: Graph Database & Ontology Specialist

Lead Data Scientist

Lead Data Scientist

Lead Data Scientist


Lead Data Scientist - ML & AI projects
Competitive annual salary of up to £90,000 dependent on experience
Hybrid working - Bristol OR Kent office base (currently 2 days in office but expected to move to 3)
Ref J12883

Unfortunately, no sponsorship available with this client so full UK working rights required

Our client is seeking to recruit a new Lead Data Scientist to lead data science initiatives and drive innovation in the healthcare industry. You'll have the opportunity to leverage your expertise in data analysis and machine learning within our dynamic and forward-thinking team, to shape the future of healthcare. If you're passionate about making a real impact and are ready to lead a team of talented data scientists, we want to hear from you.

What you'll be doing:
Lead a relatively small team of data scientists in developing and implementing advanced data analytics, machine learning and traditional and generative AI solutions, to address complex challenges in healthcare.
Collaborate with cross-functional teams to identify business opportunities, define data science strategies, and drive the development of innovative products and services.
Oversee the end-to-end process of data collection, pre-processing, analysis, and model development to derive actionable insights and improve decision-making.
Drive the development and deployment of scalable and efficient machine learning models and algorithms to enhance healthcare s...

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.