Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Lead Data Science Researcher

Top Remote Talent
Manchester
7 months ago
Applications closed

Related Jobs

View all jobs

Principal Data Scientist & Machine Learning Researcher

Principal Data Scientist & Machine Learning Researcher

Principal Data Scientist & Machine Learning Researcher

Principal Data Scientist & Machine Learning Researcher

Principal Data Scientist, AI Security Research

Sr Data Scientist (London)


A software development company is looking for a talented, long-term Lead DS Researcher. 

The company is a team of experts providing analytical services to healthcare clients. You will join an international team of first class professionals who are passionate to create products that improve quality of medical services. 

We’re looking for a Lead Data Science Researcher who thrives in research-heavy environments and enjoys exploring uncharted territory with the support of a strong technical team. You will lead a compact team of two data scientists, guiding them on high-impact research initiatives and experimental projects. Your role will involve pushing the boundaries of applied machine learning — especially in the context of medical and clinical data — and turning complex problems into innovative solutions.

This is a unique opportunity to drive forward new ideas and applications, not just optimize existing ones.

What we’re looking for:


  • Exceptional analytical and statistical skills-comfortable with uncertainty, inference, and experimentation;

  • Strong background in different areas of ML (traditional classification and regression techniques, recommender systems, text data, clustering, etc.);

  • Solid experience with deep learning frameworks like PyTorch or TensorFlow;

  • Excellent Python skills (beyond Jupyter Notebooks) - ability to build clean, testable, production-ready code;

  • Familiarity with medical or life science data is a strong plus;

  • Expertise in SQL, Pandas, Scikit-learn, and modern data workflows;

  • Comfortable working in Google Cloud Platform (GCP) environments.

Bonus points for experience with:


  • State-of-the-art NLP models, Transformers, Agentic Approaches for mixed (temporal and text) data analysis and summarization;

  • Experience with pipeline orchestration tools like Airflow, Argo, etc.;

  • Proven Experience with Anomaly Detection and Forecasting with explainability for temporal and mixed data;

  • Intermediate+ English — ability to participate in written discussions with international teams and clients.

Benefits: 


  • Join a mission-driven team working at the intersection of data, medicine, and impact;

  • Work on meaningful challenges with long-term value for public health and healthcare quality;

  • Collaborate with top-tier experts in a culture that values curiosity, autonomy, and innovation;

  • Fully remote-friendly setup with flexibility and trust at the core.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we head into 2026, the AI hiring market in the UK is going through one of its biggest shake-ups yet. Economic conditions are still tight, some employers are cutting headcount, & AI itself is automating whole chunks of work. At the same time, demand for strong AI talent is still rising, salaries for in-demand skills remain high, & new roles are emerging around AI safety, governance & automation. Whether you are an AI job seeker planning your next move or a recruiter trying to build teams in a volatile market, understanding the key AI hiring trends for 2026 will help you stay ahead. This guide breaks down the most important trends to watch, what they mean in practice, & how to adapt – with practical actions for both candidates & hiring teams.

How to Write an AI CV that Beats ATS (UK examples)

Writing an AI CV for the UK market is about clarity, credibility, and alignment. Recruiters spend seconds scanning the top third of your CV, while Applicant Tracking Systems (ATS) check for relevant skills & recent impact. Your goal is to make both happy without gimmicks: plain structure, sharp evidence, and links that prove you can ship to production. This guide shows you exactly how to do that. You’ll get a clean CV anatomy, a phrase bank for measurable bullets, GitHub & portfolio tips, and three copy-ready UK examples (junior, mid, research). Paste the structure, replace the details, and tailor to each job ad.

AI Recruitment Trends 2025 (UK): What Job Seekers Must Know About Today’s Hiring Process

Summary: UK AI hiring has shifted from titles & puzzle rounds to skills, portfolios, evals, safety, governance & measurable business impact. This guide explains what’s changed, what to expect in interviews, and how to prepare—especially for LLM application, MLOps/platform, data science, AI product & safety roles. Who this is for: AI/ML engineers, LLM engineers, data scientists, MLOps/platform engineers, AI product managers, applied researchers & safety/governance specialists targeting roles in the UK.