Lead Data Science Researcher

Top Remote Talent
Manchester
9 months ago
Applications closed

Related Jobs

View all jobs

Data Science Lead — Hybrid Kidney Research

Data science programme lead

Data science programme lead

Data science programme lead

Data science programme lead, hireful

Principal Data Science and Machine Learning Researcher


A software development company is looking for a talented, long-term Lead DS Researcher. 

The company is a team of experts providing analytical services to healthcare clients. You will join an international team of first class professionals who are passionate to create products that improve quality of medical services. 

We’re looking for a Lead Data Science Researcher who thrives in research-heavy environments and enjoys exploring uncharted territory with the support of a strong technical team. You will lead a compact team of two data scientists, guiding them on high-impact research initiatives and experimental projects. Your role will involve pushing the boundaries of applied machine learning — especially in the context of medical and clinical data — and turning complex problems into innovative solutions.

This is a unique opportunity to drive forward new ideas and applications, not just optimize existing ones.

What we’re looking for:


  • Exceptional analytical and statistical skills-comfortable with uncertainty, inference, and experimentation;

  • Strong background in different areas of ML (traditional classification and regression techniques, recommender systems, text data, clustering, etc.);

  • Solid experience with deep learning frameworks like PyTorch or TensorFlow;

  • Excellent Python skills (beyond Jupyter Notebooks) - ability to build clean, testable, production-ready code;

  • Familiarity with medical or life science data is a strong plus;

  • Expertise in SQL, Pandas, Scikit-learn, and modern data workflows;

  • Comfortable working in Google Cloud Platform (GCP) environments.

Bonus points for experience with:


  • State-of-the-art NLP models, Transformers, Agentic Approaches for mixed (temporal and text) data analysis and summarization;

  • Experience with pipeline orchestration tools like Airflow, Argo, etc.;

  • Proven Experience with Anomaly Detection and Forecasting with explainability for temporal and mixed data;

  • Intermediate+ English — ability to participate in written discussions with international teams and clients.

Benefits: 


  • Join a mission-driven team working at the intersection of data, medicine, and impact;

  • Work on meaningful challenges with long-term value for public health and healthcare quality;

  • Collaborate with top-tier experts in a culture that values curiosity, autonomy, and innovation;

  • Fully remote-friendly setup with flexibility and trust at the core.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.

How to Write an AI Job Ad That Attracts the Right People

Artificial intelligence is now embedded across almost every sector of the UK economy. From fintech and healthcare to retail, defence and climate tech, organisations are competing for AI talent at an unprecedented pace. Yet despite the volume of AI job adverts online, many employers struggle to attract the right candidates. Roles are flooded with unsuitable applications, while highly capable AI professionals scroll past adverts that feel vague, inflated or disconnected from reality. In most cases, the issue isn’t a shortage of AI talent — it’s the quality of the job advert. Writing an effective AI job ad requires more care than traditional tech hiring. AI professionals are analytical, sceptical of hype and highly selective about where they apply. A poorly written advert doesn’t just fail to convert — it actively damages your credibility. This guide explains how to write an AI job ad that attracts the right people, filters out mismatches and positions your organisation as a serious employer in the AI space.