Junior Data Scientist

Artefact
1 year ago
Applications closed

Related Jobs

View all jobs

Junior Data Scientist - AI Practice Team

Junior Data Scientist - AI Practice Team

Junior Data Scientist Python SQL - HealthTech

Senior Data Scientist - AI Practice Team

Senior Data Scientist

Senior Data Scientist - AI Practice Team

Location:London, UK (Hybrid)
Type:Full-Time

Who we are

Artefact is a new generation of data service provider, specialising in data-driven consulting and data-driven digital marketing. We are dedicated to transforming data into business impact across the entire value chain of organisations. With skyrocketing growth, Artefact has established a global presence with over 1,000 employees across 20 offices worldwide.

Our data-driven solutions are designed to meet the specific needs of our clients, leveraging our deep AI expertise and innovative methodologies. Our cohesive teams of data scientists, engineers, and consultants are focused on accelerating digital transformation, ensuring tangible results for every client.

Role Profile

A Data Scientist at Artefact will work together with consultants as a joint team on client projects. Leverage machine learning, AI, and statistical techniques to solve specific business problems.

Responsibilities

Develop and maintain code to deliver data science solutions. Work together with business consultants to understand and document client needs. Follow a structured skill development program aimed at advancing to a Senior Data Scientist role. Contribute to ongoing research and academic initiatives. Simplify and communicate technical concepts to non-technical stakeholders.

Required skills

Data: Design and implement storage solutions with SQL, NoSQL, cloud storage, data versioning, validation, and advanced dataframe handling (Polars/PySpark).Python: Utilise virtual environments, object-oriented programming, data classes, and data manipulation libraries for scripting and visualisation.Repository: Manage code with single-branch PRs/MRs, CI/CD pipelines, pre-commit hooks, and Markdown documentation for building, testing, and deploying.Cloud: Leverage cloud infrastructure (e.g., AWS EC2), databases, and configuration with markup files for remote management and deployment.Model: Implement models (e.g., linear regression, gradient boosting) with training/testing datasets, cross-validation, performance visualisation, and use hosted APIs; explore techniques like time-series forecasting, clustering, or Bayesian inference.Orchestration and Parallelisation: Manage workflows with tools like Metaflow, MLFlow, AirFlow, or DVC; utilise parallelisation frameworks like PySpark or Ray for efficient model processing.

Desirable skills

A Master’s degree in a quantitative field Exposure to cloud platforms (AWS, Azure, GCP)

Why you should join us

Artefact is revolutionizing marketing:join us to build the future of marketingProgress: every day offers new challenges and new opportunities to learnCulture:Check out our website (Artefact.com) or Instagram (Artefact UK) to find out more about our diverse, vibrant culture hereEntrepreneurship: you will be joining a team of driven entrepreneurs. We won’t give up until we make a huge dent in this industry!

Hit apply, and see whether what we offer is what you’ve been looking for!

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.