Junior Data Scientist

Tower of London
1 year ago
Applications closed

Related Jobs

View all jobs

Junior Data Scientist: Sports Analytics & Trading

Senior Data Scientist - Hybrid, SC Cleared Defence AI Lead

Data Scientist

Senior Data Scientist - Lead Data Innovation (Hybrid)

Senior Data Scientist SME & AI Architect

Senior Data Scientist

Junior Data Scientist

Location: London

Job Type: Full-time

Salary: Competitive

A leading technology organisation is seeking a motivated Junior Data Scientist to join their dynamic team. This entry-level position is an excellent opportunity for individuals looking to develop their skills and gain hands-on experience in data science while contributing to projects that drive business impact across various industries, including healthcare, retail, logistics, finance, and digital transformation.

This technology company specialises in providing data-driven solutions and software development services across a range of sectors. Their offerings include the creation of websites, mobile applications, and SaaS products designed to fulfil specific business objectives, such as enhancing customer engagement, optimising operational efficiency, and driving sales growth.

Key Responsibilities:

Support Data Science Projects: Assist in the end-to-end lifecycle of data science projects, including data collection, preprocessing, and analysis, while learning to apply machine learning techniques.
Model Development: Collaborate with senior team members to design and implement machine learning models that address business challenges, gaining exposure to advanced algorithms and methodologies.
Data Analysis: Conduct exploratory data analysis (EDA) to identify trends, patterns, and insights from data, contributing to the strategic initiatives of the company.
Collaboration: Work closely with cross-functional teams, including data engineers and product managers, to ensure alignment on project goals and deliverables.
Documentation and Reporting: Help document processes and findings, creating clear reports and visualisations that communicate results to technical and non-technical stakeholders.
Continuous Learning: Stay informed about industry trends and new technologies in data science and machine learning, actively seeking opportunities to expand your skill set. 

Key Requirements:

Education: A degree in a relevant field such as Computer Science, Statistics, Mathematics, or Data Science is preferred.
Experience: 0-2 years of relevant hands-on experience in data science or related fields, including internships or co-op placements that involved practical application of data analysis and machine learning techniques.
Technical Skills: Proficiency in programming languages such as Python or R. Familiarity with machine learning libraries (e.g., scikit-learn) and data manipulation tools (e.g., Pandas) is a plus.
Data Management: Understanding of SQL and experience with data analysis and visualisation tools (e.g., Tableau, Matplotlib).
Analytical Skills: Strong problem-solving abilities and a passion for data analysis and insights.
Soft Skills: Effective communication skills, a willingness to learn, and the ability to work collaboratively within a team.If you're ready to kickstart your career in data science and you meet the qualifications, please send your CV to us ASAP!

If you are interested please apply ASAP. The People Network is an employment agency and will respond to all applicants within three - five working days. If you do not hear within these timescales please feel free to get in touch

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Maths for AI Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are a software engineer, data scientist or analyst looking to move into AI or you are a UK undergraduate or postgraduate in computer science, maths, engineering or a related subject applying for AI roles, the maths can feel like the biggest barrier. Job descriptions say “strong maths” or “solid fundamentals” but rarely spell out what that means day to day. The good news is you do not need a full maths degree worth of theory to start applying. For most UK roles like Machine Learning Engineer, AI Engineer, Data Scientist, Applied Scientist, NLP Engineer or Computer Vision Engineer, the maths you actually use again & again is concentrated in a handful of topics: Linear algebra essentials Probability & statistics for uncertainty & evaluation Calculus essentials for gradients & backprop Optimisation basics for training & tuning A small amount of discrete maths for practical reasoning This guide turns vague requirements into a clear checklist, a 6-week learning plan & portfolio projects that prove you can translate maths into working code.

Neurodiversity in AI Careers: Turning Different Thinking into a Superpower

The AI industry moves quickly, breaks rules & rewards people who see the world differently. That makes it a natural home for many neurodivergent people – including those with ADHD, autism & dyslexia. If you’re neurodivergent & considering a career in artificial intelligence, you might have been told your brain is “too much”, “too scattered” or “too different” for a technical field. In reality, many of the strengths that come with ADHD, autism & dyslexia map beautifully onto AI work – from spotting patterns in data to creative problem-solving & deep focus. This guide is written for AI job seekers in the UK. We’ll explore: What neurodiversity means in an AI context How ADHD, autism & dyslexia strengths match specific AI roles Practical workplace adjustments you can ask for under UK law How to talk about your neurodivergence during applications & interviews By the end, you’ll have a clearer picture of where you might thrive in AI – & how to set yourself up for success.

AI Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we head into 2026, the AI hiring market in the UK is going through one of its biggest shake-ups yet. Economic conditions are still tight, some employers are cutting headcount, & AI itself is automating whole chunks of work. At the same time, demand for strong AI talent is still rising, salaries for in-demand skills remain high, & new roles are emerging around AI safety, governance & automation. Whether you are an AI job seeker planning your next move or a recruiter trying to build teams in a volatile market, understanding the key AI hiring trends for 2026 will help you stay ahead. This guide breaks down the most important trends to watch, what they mean in practice, & how to adapt – with practical actions for both candidates & hiring teams.