Junior Data Engineer

Liverpool
11 months ago
Applications closed

Related Jobs

View all jobs

Junior Data Engineer (Data Science)

Senior Data Scientist

Senior Geospatial Data Scientist

Junior / Graduate Data Scientist

Senior Data Science Engineer, Tennis

Senior Simulation Engineer (Data Science)

Joining an established data function based in the North West of England, solving problems to optimise business operations, utilising machine learning.

What you'll be doing:

Collaborate with product owners, engineers and data scientists to understand business domain and the related data
Data cleansing, ingestion and modelling
Manage and store large sets of data whilst ensuring it is accessible
Utilise the latest data technologies and tools for tasks in hand
Present/ communicate solutions to various stakeholders
Train and coach team members where necessary
Proactively seek ways to incorporate new ideas into SaaS solutions
Experience to succeed:

Recent degree in Computer Science related subject
Big Data processing - Databricks using Apache Kafka, Spark Streaming etc.
Experience using Python for data modelling
Knowledge of ETL and related tools
Worked with Cloud computing platforms
Good people skills and comfortable collaborating with different functions
Benefits:

Salary £(phone number removed)
Hybrid working -1-2 days in the office a week
25 days holiday + bank holidays (increase with length of service)
Annual bonus scheme (based on performance)
Private medical insurance
Life assurance
Holiday Exchange Scheme (buy/sell a week's holiday)
Sounds good?Click apply now!

Hays Specialist Recruitment Limited acts as an employment agency for permanent recruitment and employment business for the supply of temporary workers. By applying for this job you accept the T&C's, Privacy Policy and Disclaimers which can be found at (url removed)

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.