Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

IRB Model Development Senior Manager

Bailey & French
Manchester
8 months ago
Applications closed

Job Title: Wholesale IRB Model Development Consultant (Quantitative Credit Risk)


Location:Remote but office is in London


Type:Full-time


Department:Quantitative Credit Risk, Risk Management


Reports To:Director of Quantitative Risk Management / Head of Risk Consulting


Job Overview:


We are seeking a highly skilled and motivated consultant to join our team, focusing on the development and validation of Internal Ratings-Based (IRB) models. As part of our Quantitative Credit Risk team, you will work closely with financial institutions, providing expertise on the development, calibration, validation, and implementation of IRB models in line with regulatory requirements. This role demands a deep understanding of wholesale credit portfolios, statistical modeling techniques, and regulatory frameworks such as Basel III/IV.


Key Responsibilities:


IRB Model Development:


  • Lead the development of IRB models for wholesale credit exposures, including Probability of Default (PD), Loss Given Default (LGD), and Exposure at Default (EAD).
  • Implement model calibration and backtesting methodologies to ensure accuracy and robustness.
  • Apply advanced statistical and econometric techniques to enhance model performance and predictive power.


Regulatory Compliance & Documentation:


  • Ensure all models are compliant with regulatory standards, including Basel III/IV and local supervisory guidelines.
  • Prepare detailed model documentation, including methodology, assumptions, and results, to support model approvals by internal governance and regulatory bodies.
  • Engage with regulators during reviews and provide necessary justifications and analyses to address feedback.


Model Validation & Risk Analytics:


  • Collaborate with validation teams to independently review and challenge model assumptions, methodologies, and performance.
  • Perform stress testing and sensitivity analyses to assess the impact of various risk factors on the models.
  • Work with internal audit and regulatory teams to ensure models meet all validation and audit requirements.


Stakeholder Engagement:


  • Provide expert advisory services to clients, including banks and financial institutions, regarding their IRB modeling framework and regulatory reporting obligations.
  • Collaborate with business, risk management, and IT teams to ensure seamless integration of models into systems and processes.
  • Lead or contribute to workshops and training sessions for clients on model development, risk management, and regulatory compliance.


Continuous Improvement:


  • Stay updated on evolving regulatory requirements and advancements in risk modeling techniques.
  • Contribute to the development of best practices in wholesale credit risk modeling within the consultancy.


Required Qualifications and Skills:


Education:

  • Master’s or Ph.D. in Quantitative Finance, Economics, Mathematics, Statistics, Engineering, or a related quantitative field.


Experience:

  • 8+ years of experience in quantitative risk modeling, with a focus on wholesale credit risk and IRB models.
  • Proven track record of developing, validating, and implementing IRB models within large financial institutions or consultancies.
  • Strong knowledge of Basel III/IV regulatory framework and experience working with global regulators.


Technical Skills:

  • Proficiency in statistical and data analysis software such as R, Python, SAS, or MATLAB.
  • Strong understanding of advanced statistical methods, econometrics, and machine learning techniques.
  • Experience with database management and query tools (e.g., SQL).


Soft Skills:

  • Excellent communication and presentation skills, with the ability to convey complex quantitative concepts to both technical and non-technical stakeholders.
  • Strong problem-solving skills and the ability to work both independently and in a team-oriented environment.
  • Strong project management and organizational skills with the ability to meet tight deadlines.


Preferred Qualifications:

  • Prior experience working in a consultancy setting or with multiple financial institutions.
  • Familiarity with automation of model development and validation processes.
  • Knowledge of cloud-based data infrastructure and analytics tools.


Compensation:

Fixed salary ranging from £100k-£140k depending on experience

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Why AI Careers in the UK Are Becoming More Multidisciplinary

Artificial intelligence is no longer a single-discipline pursuit. In the UK, employers increasingly want talent that can code and communicate, model and manage risk, experiment and empathise. That shift is reshaping job descriptions, training pathways & career progression. AI is touching regulated sectors, sensitive user journeys & public services — so the work now sits at the crossroads of computer science, law, ethics, psychology, linguistics & design. This isn’t a buzzword-driven change. It’s happening because real systems are deployed in the wild where people have rights, needs, habits & constraints. As models move from lab demos to products that diagnose, advise, detect fraud, personalise education or generate media, teams must align performance with accountability, safety & usability. The UK’s maturing AI ecosystem — from startups to FTSE 100s, consultancies, the public sector & universities — is responding by hiring multidisciplinary teams who can anticipate social impact as confidently as they ship features. Below, we unpack the forces behind this change, spotlight five disciplines now fused with AI roles, show what it means for UK job-seekers & employers, and map practical steps to future-proof your CV.

AI Team Structures Explained: Who Does What in a Modern AI Department

Artificial Intelligence (AI) and Machine Learning (ML) are no longer confined to research labs and tech giants. In the UK, organisations from healthcare and finance to retail and logistics are adopting AI to solve problems, automate processes, and create new products. With this growth comes the need for well-structured teams. But what does an AI department actually look like? Who does what? And how do all the moving parts come together to deliver business value? In this guide, we’ll explain modern AI team structures, break down the responsibilities of each role, explore how teams differ in startups versus enterprises, and highlight what UK employers are looking for. Whether you’re an applicant or an employer, this article will help you understand the anatomy of a successful AI department.

Why the UK Could Be the World’s Next AI Jobs Hub

Artificial Intelligence (AI) has rapidly moved from research labs into boardrooms, classrooms, hospitals, and homes. It is already reshaping economies and transforming industries at a scale comparable to the industrial revolution or the rise of the internet. Around the world, countries are competing fiercely to lead in AI innovation and reap its economic, social, and strategic benefits. The United Kingdom is uniquely positioned in this race. With a rich heritage in computing, world-class universities, forward-thinking government policy, and a growing ecosystem of startups and enterprises, the UK has many of the elements needed to become the world’s next AI hub. Yet competition is intense, particularly from the United States and China. Success will depend on how effectively the UK can scale its strengths, close its gaps, and seize opportunities in the years ahead. This article explores why the UK could be the world’s next global hub for artificial intelligence, what challenges it must overcome, and what this means for businesses, researchers, and job seekers.