Head of Risk Aggregation

Ki Insurance
London
1 year ago
Applications closed

Related Jobs

View all jobs

Head of Data Science

Lead Pricing Data Scientist

Head of Data Science

Head of Data Science

Head of Data Science

Head of Data Science

Role DetailsWho are we?

Learn more about the general tasks related to this opportunity below, as well as required skills.Ki is the biggest global insurance tech company you’ve never heard of, unless you’ve been looking to insure a satellite, wind farm or music festival recently.

We launched in 2021 on the back of a fund raise that delivered $500m of investment, making us one of the largest fintech start-ups that year. Our investors were excited about the fact we were revolutionising the way a 333 year-old industry was working. We have written over $400m worth of premium in 2021. There are hardly any industries left that are mainly paper based, but the specialty insurance market is one. Together with partners at Google and UCL we developed Ki and created a platform that helps insurance brokers place risk in a fast and frictionless way. We’re continuing to lead the charge on the digitisation of this market and we need more excellent minds to work with us to realise this goal and create more opportunities.Purpose of the Role:This is a strategic leadership role within Ki responsible for driving continuous innovation and enhancement of the Catastrophe Modelling and Exposure Management capabilities and maximising the contribution to the Ki franchise.The Risk Aggregation team are responsible for ensuring Ki identifies, measures, manages and reports catastrophe risks and material exposures considering both natural and non-natural catastrophe risks to both internal and external stakeholders.Bringing your experience with capital modelling / reinsurance analytics you will leverage the analytics and data abilities of the wider Ki team, supported by a dedicated Exposure Management Research & Development resource.You will be leading engagement with the Data Science, Technology and Operations teams to drive efficiencies through the end-to-end aggregations process leveraging LLMs, new and evolving data sources and data augmentation. You will be comfortable in being accountable for the analytical capabilities to support the projection of catastrophe risk exposures and the analysis of alternative strategic, business planning and reinsurance purchasing scenarios.Our cultureInclusion & Diversity is at the heart of our business at Ki. We recognise that diversity in age, race, gender, ethnicity, sexual orientation, physical ability, thought and social background bring richness to our working environment. No matter who you are, where you’re from, how you think, or who you love, we believe you should be you.You’ll get a highly competitive remuneration and benefits package. This is kept under constant review to make sure it stays relevant. We understand the power of saying thank you and take time to acknowledge and reward extraordinary effort by teams or individuals.

#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write an AI Job Ad That Attracts the Right People

Artificial intelligence is now embedded across almost every sector of the UK economy. From fintech and healthcare to retail, defence and climate tech, organisations are competing for AI talent at an unprecedented pace. Yet despite the volume of AI job adverts online, many employers struggle to attract the right candidates. Roles are flooded with unsuitable applications, while highly capable AI professionals scroll past adverts that feel vague, inflated or disconnected from reality. In most cases, the issue isn’t a shortage of AI talent — it’s the quality of the job advert. Writing an effective AI job ad requires more care than traditional tech hiring. AI professionals are analytical, sceptical of hype and highly selective about where they apply. A poorly written advert doesn’t just fail to convert — it actively damages your credibility. This guide explains how to write an AI job ad that attracts the right people, filters out mismatches and positions your organisation as a serious employer in the AI space.

Maths for AI Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are a software engineer, data scientist or analyst looking to move into AI or you are a UK undergraduate or postgraduate in computer science, maths, engineering or a related subject applying for AI roles, the maths can feel like the biggest barrier. Job descriptions say “strong maths” or “solid fundamentals” but rarely spell out what that means day to day. The good news is you do not need a full maths degree worth of theory to start applying. For most UK roles like Machine Learning Engineer, AI Engineer, Data Scientist, Applied Scientist, NLP Engineer or Computer Vision Engineer, the maths you actually use again & again is concentrated in a handful of topics: Linear algebra essentials Probability & statistics for uncertainty & evaluation Calculus essentials for gradients & backprop Optimisation basics for training & tuning A small amount of discrete maths for practical reasoning This guide turns vague requirements into a clear checklist, a 6-week learning plan & portfolio projects that prove you can translate maths into working code.

Neurodiversity in AI Careers: Turning Different Thinking into a Superpower

The AI industry moves quickly, breaks rules & rewards people who see the world differently. That makes it a natural home for many neurodivergent people – including those with ADHD, autism & dyslexia. If you’re neurodivergent & considering a career in artificial intelligence, you might have been told your brain is “too much”, “too scattered” or “too different” for a technical field. In reality, many of the strengths that come with ADHD, autism & dyslexia map beautifully onto AI work – from spotting patterns in data to creative problem-solving & deep focus. This guide is written for AI job seekers in the UK. We’ll explore: What neurodiversity means in an AI context How ADHD, autism & dyslexia strengths match specific AI roles Practical workplace adjustments you can ask for under UK law How to talk about your neurodivergence during applications & interviews By the end, you’ll have a clearer picture of where you might thrive in AI – & how to set yourself up for success.