Head of Data Science and AI

Talent
London
8 months ago
Applications closed

Related Jobs

View all jobs

Head Of Data Science

Head of Data Science, AI & Advanced Analytics Strategy

Head of Data Science - Advanced Analytics & AI

Head of Data Science - Advanced Analytics & AI

Head of Data Science - Advanced Analytics & AI

Senior Data Science Manager

• 12 month contract within the public sector

• Hybrid working (3 days per week onsite) – Somerset base

• £1200 per day Inside IR35

• Active SC Clearance required


Head of Data Science and AI


Our public sector client is looking for a Head of Data Science and AI to join them to lead a team of data scientists and work with the team and stakeholders to build team capability and skills, ensure clear team objectives, and support with successful project delivery. You will provide organisational leadership on responsible AI governance, the use of commercial AI applications, and procurement of third-party products. Keeping the wider organisation informed about progress, advances in AI, and future possibilities is expected.

As the Head of Data Science and AI you will be responsible for building strong relationships with senior leadership and executives, educating them in the steps required to capitalise on the benefits of data science and AI in a safe and responsible way. You will oversee the building and maintaining of relationships with external parties, such as other government departments or outsourced delivery capability. You must be a strong communicator who can explain complex topics effectively to a wide audience.


Skills and Experience


  • Expert level knowledge of data science and machine learning, including a range of different techniques such as supervised (e.g. decision trees, random forests), unsupervised (e.g. clustering), and deep learning. Knowledge of generative AI is desirable.
  • Expert level of knowledge of statistics, applied mathematics and scientific analysis, with demonstrable experience of using a variety of techniques to deliver organisational benefits
  • Expert level knowledge of exploratory data analysis and statistical analysis of large datasets.
  • Practitioner knowledge of Machine Learning Ops and A/B testing different models
  • Practitioner knowledge of responsible and ethical AI practices
  • Practitioner skills in a scientific programming language such as Python, R, C++.
  • Experience of innovating and solving business problems through the application of data science or machine learning
  • Ability to think critically and break down complex challenges into addressable projects
  • Experience of measuring benefits of data science solutions and road-mapping improvements
  • Experience of leading projects with multiple contributors or leading teams
  • Experience of mentoring and developing data scientists


Day to Day


  • Delivering efficiency and customer benefits using data science and AI
  • Strategising on the responsible use of data science and AI for automation or new insights
  • Working with stakeholders to prioritise data science, AI and automation projects
  • Driving operationalisation of data science and machine learning by guiding on effective experimentation, deployment of solutions, monitoring of performance, and scaling
  • Team leadership and development for a team of data scientists, including technical and project guidance
  • Line management of Principal Data Scientists and setting objectives for the data science team
  • Working with Technology division senior leadership peers will contribute to the strategic direction of the function
  • Staying up to date with government guidance on the responsible use of AI and translating this into best practise


Next Steps

If you have the relevant skills and experience, and are interested in finding out more about this role, please apply with your up to date CV and I will endeavour to get back to you.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.

How to Write an AI Job Ad That Attracts the Right People

Artificial intelligence is now embedded across almost every sector of the UK economy. From fintech and healthcare to retail, defence and climate tech, organisations are competing for AI talent at an unprecedented pace. Yet despite the volume of AI job adverts online, many employers struggle to attract the right candidates. Roles are flooded with unsuitable applications, while highly capable AI professionals scroll past adverts that feel vague, inflated or disconnected from reality. In most cases, the issue isn’t a shortage of AI talent — it’s the quality of the job advert. Writing an effective AI job ad requires more care than traditional tech hiring. AI professionals are analytical, sceptical of hype and highly selective about where they apply. A poorly written advert doesn’t just fail to convert — it actively damages your credibility. This guide explains how to write an AI job ad that attracts the right people, filters out mismatches and positions your organisation as a serious employer in the AI space.

Maths for AI Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are a software engineer, data scientist or analyst looking to move into AI or you are a UK undergraduate or postgraduate in computer science, maths, engineering or a related subject applying for AI roles, the maths can feel like the biggest barrier. Job descriptions say “strong maths” or “solid fundamentals” but rarely spell out what that means day to day. The good news is you do not need a full maths degree worth of theory to start applying. For most UK roles like Machine Learning Engineer, AI Engineer, Data Scientist, Applied Scientist, NLP Engineer or Computer Vision Engineer, the maths you actually use again & again is concentrated in a handful of topics: Linear algebra essentials Probability & statistics for uncertainty & evaluation Calculus essentials for gradients & backprop Optimisation basics for training & tuning A small amount of discrete maths for practical reasoning This guide turns vague requirements into a clear checklist, a 6-week learning plan & portfolio projects that prove you can translate maths into working code.