Head of Biocatalysis

Barrington James
London
7 months ago
Applications closed

Related Jobs

View all jobs

Head of Commercial Analysis and Reporting

Head of Engineering

Head of Software Engineering | £150k – Java, Machine Learning, and Data-Driven Innovation

Head of Internal Audit

Head of Data Science

Head of Artificial Intelligence – Smart Manufacturing

A pioneering company at the forefront of utilising artificial intelligence to develop cutting-edge enzyme systems are looking for aHead of Biocatalysisto lead the development and application of innovative enzyme systems. By harnessing the power of AI and biocatalysis, they aim to create sustainable, efficient, and scalable solutions that drive meaningful change.



Have you got what it takes to succeed The following information should be read carefully by all candidates.

The ideal candidate will have a strong background in biocatalysis, enzyme engineering, and process development, coupled with experience in leveraging AI for biotechnological advancements.


Responsibilities:

  • Create and implement a strategy plan for the biocatalysis division that is in line with the objectives and mission of the business.
  • Make sure biocatalytic processes are efficient and scalable, with an emphasis on affordability and environmental sustainability.
  • Oversee, guide, and motivate a group of scientists and engineers working across disciplines.
  • Use AI-driven methods to supervise the design, development, and optimisation of enzyme systems.
  • Work together with AI experts to incorporate machine learning methods into process optimisation and enzyme engineering.
  • Form and preserve alliances with research organisations, business executives, and academic institutions.
  • Participate in the company's strategic planning and decision-making processes by offering thought leadership.


Background:

  • PhD in Chemical Engineering, Biotechnology, Biochemistry, or a similar discipline.
  • A wealth of knowledge in process development, enzyme engineering, and biocatalysis.
  • Proven ability to manage and lead productive teams in a professional setting.
  • Prominent publication history in esteemed journals showcasing thought leadership and proficiency in the domains of biocatalysis and enzyme engineering.
  • Track record of successfully utilising AI and machine learning for biotechnological uses.
  • Strong knowledge of sustainable chemistry, renewable resources, and waste management.
  • Outstanding interpersonal, communication, and project management abilities.
  • Capacity to operate tactically and strategically.


Join a company aiming to create a more sustainable world through the power of biocatalysis and AI.


Following your application Filipa Englefield, a specialist Biotech will discuss the opportunity with you in detail. She will be more than happy to answer any questions relating to the industry and the potential for your career growth. The conversation can also progress further to discussing other opportunities, which are also available right now or will be imminently becoming available. This position has been highly popular, and it is likely that it will close prematurely. We recommend applying as soon as possible to avoid disappointment.


Please click ‘apply’ or contact Filipa Englefield for any further information.


Filipa Englefield

Recruitment Consultant - EMEA

Email: fenglefield (@) barringtonjames.com

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for AI Jobs (With Real GitHub Examples)

In the fast-evolving world of artificial intelligence (AI), an impressive portfolio of projects can act as your passport to landing a sought-after role. Even if you’ve aced interviews in the past, employers in AI and machine learning (ML) are increasingly asking candidates to demonstrate hands-on experience through the projects they’ve built and shared online. This is because practical ability often speaks volumes about your suitability for a role—far more than any exam or certification alone could. In this article, we’ll explore how to build an outstanding AI portfolio that catches the eye of recruiters and hiring managers, including: Why an AI portfolio is crucial for job seekers. How to choose AI projects that align with your target roles. Specific project ideas and real GitHub examples to help you stand out. Best practices for showcasing your work, from writing clear READMEs to using Jupyter notebooks effectively. Tips on structuring your GitHub so that employers can instantly see your value. Moreover, we’ll discuss how you can use your portfolio to connect with top employers in AI, with a handy link to our CV-upload page on Artificial Intelligence Jobs for when you’re ready to apply. By the end, you’ll have a clear roadmap to building a portfolio that will help secure interviews—and the AI job—of your dreams.

AI Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

In today's competitive AI job market, nailing a technical interview can be the difference between landing your dream role and getting lost in the crowd. Whether you're looking to break into machine learning, deep learning, NLP (Natural Language Processing), or data science, your problem-solving skills and system design expertise are certain to be put to the test. AI‑related job interviews typically involve a range of coding challenges, algorithmic puzzles, and system design questions. You’ll often be asked to delve into the principles of machine learning pipelines, discuss how to optimise large-scale systems, and demonstrate your coding proficiency in languages like Python, C++, or Java. Adequate preparation not only boosts your confidence but also reduces the likelihood of fumbling through unfamiliar territory. If you’re actively seeking positions at major tech companies or innovative AI start-ups, then check out www.artificialintelligencejobs.co.uk for some of the latest vacancies in the UK. Meanwhile, this blog post will guide you through 30 real coding & system-design questions you’re likely to encounter during your AI job interview. This list is designed to help you practise, anticipate typical question patterns, and stay ahead of the competition. By reading through each question and thinking about the possible approaches, you’ll sharpen your problem-solving skills, time management, and critical thinking. Each question covers fundamental concepts that employers regularly test, ensuring you’re well-equipped for success. Let’s dive right in.

Negotiating Your AI Job Offer: Equity, Bonuses & Perks Explained

Artificial intelligence (AI) has proven itself to be one of the most transformative forces in today’s business world. From smart chatbots in customer service to predictive analytics in finance, AI technologies are reshaping how organisations operate and innovate. As the demand for AI professionals grows, so does the complexity of compensation packages. If you’re a mid‑senior AI professional, you’ve likely seen job offers that include far more than just a base salary—think equity, bonuses, and a range of perks designed to entice you into joining or staying with a company. For many, the focus remains squarely on salary. While that’s understandable—after all, your monthly take‑home pay is what covers day-to-day expenses—limiting your negotiations to salary alone can leave considerable value on the table. From stock options in ambitious startups to sign‑on bonuses that ‘buy you out’ of your current contract, modern AI job offers often include elements that can significantly boost your long-term wealth and job satisfaction. This article aims to shed light on the full scope of AI compensation—specifically focusing on how equity, bonuses, and perks can enhance (or sometimes detract from) the overall value of your package. We’ll delve into how these elements work in practice, what to watch out for, and how to navigate the negotiation process effectively. Our goal is to provide mid‑senior AI professionals with the insights and tools to land a holistic compensation deal that accurately reflects their technical expertise, leadership potential, and strategic importance in this fast-moving field. Whether you’re eyeing a leadership role in machine learning at an established tech giant, or you’re considering a pioneering position at a disruptive AI startup, the knowledge in this guide will help you weigh the merits of base salary alongside the potential riches—and risks—of equity, bonuses, and other benefits. By the end, you’ll have a clearer sense of how to align your compensation with both your immediate lifestyle needs and long-term career aspirations.