Head of BI & Analytics

Harnham
London
1 year ago
Applications closed

Related Jobs

View all jobs

Junior Data Scientist / Data Analyst

Data Scientist

Head of Data Science

Head of Machine Learning (Recommendations, AI Stylist & Search)

Head of Artificial Intelligence Impact

Head of DevOps and DataOps

HEAD OF BI & ANALYTICS

£120,000 - £160,000 + UP TO 30% BONUS

HYBRID – LONDON – 2X A WEEK


*Please note, this company is unable to offer sponsorship at this time and you must be a UK resident*


THE COMPANY

This leading organisation in the iGaming space own some of the biggest gaming/gambling brands in the industry. They would pitch themselves as a Media company, focusing on media acquisition and lead generation, helping their clients better understand their customer insights, making them innovators in the space.


THE ROLE

You’ll report into the Chief Marketing Officer but be a transformational leader yourself. Projects will include improving the current data infrastructure to improve future insights, create growth through global expansion and support Engineering, Data Science and Analytics more broadly. You’ll be managing a team of 13, with 4 to 5 direct reports.


SKILLS + EXPERIENCE

Must haves:

  • The ability to communicate change to your teams as well as the wider business – proven end to end examples will need to be on your CV!
  • Industry experience – Gaming or Gambling ideal
  • Team management of a team of at least 8
  • A technical background across data, working with Data Scientists and Data Engineers


HOW TO APPLY

If this sounds like the role for you, swiftly send over your CV to Izzi at Harnham by using the link below.


KEY TERMS

IBM, Coremetrics, Google Analytics, GA, Omniture, SiteCatalyst, Adobe Analytics, Analyst, Web, Digital, Online, Website, Financial Services, Finance, A/B, Test, Split, Multivariate, MVT, Tracking, Code, Tagging, Tags, Insight, Client, Agency, Management, Strategy, CRO, Conversion, Optimisation, Optimizely, Test and Target, Adobe Target, Maxymiser, VWO, Visual Website Optimiser, Tag Manager, Tag-manager, Tagging, Tag Management, Set Up Tags, Manage Tags, Manage Tagging, Managing Tags, Managing Tagging, Setting Up Tags, Analytics Tracking, Implement Tags, Implement Tagging, Tagging Implementation, Tag Implementation, Tracking Implementation, Analytics Implementation

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.