Graduate Teaching Assistant (GTA) - Federated Learning-based Intrusion Detection System for Intelligent Transportation Systems with Mixed Urban-Road Users

University of Reading
Reading
2 months ago
Applications closed

Related Jobs

View all jobs

Graduate AI Engineer

Graduate Software Engineer

Graduate Business Systems Analyst

Graduate AI & Machine Learning Engineer | London, UK

Data Analyst - Graduate

Data Engineer (Graduate)

We are pleased to announce a fantastic opportunity for ambitious computer scientists to join our Computer Science Graduate Teaching Assistant (GTA) Programme!

How does it work?

Candidates will study for a four year, full time funded PhD (3 quarters of your time) whilst working and receiving a salary to gain valuable teaching experience (1 quarter of your time). Candidates will receive a salary and stipend package that exceeds the standard UKRI stipend for a full-time PhD.

Home/RoI Students will have their PhD fees waived, International students will receive a fee waiver equivalent to the Home/RoI fee and will be expected to fund the difference between the International fee and the Home/RoI fee. There will be a package of support to enable you to develop a research career in this exciting field.

PhD Topic: Federated Learning-based Intrusion Detection System for Intelligent Transportation Systems with Mixed Urban-Road Users

This research aims to develop a Federated Learning-based IDS to secure Intelligent Transportation Systems, addressing the unique challenges of mixed urban road users. By leveraging Federated Learning, the IDS ensures privacy-preserving, real-time detection of cyber threats in a multi-user environment. The system will integrate with the IDS tool to provide advanced intrusion detection capabilities, safeguarding connected transportation networks against evolving security threats. There are three main objectives:

  1. Develop a Federated Learning-based Intrusion Detection System (IDS) tailored to Intelligent Transportation Systems (ITS) that can manage the diverse and dynamic environments of mixed urban-road users.
  2. Enhance the security of Federated Learning models to protect the federated learning process from adversarial attacks, ensuring user data privacy.
  3. Optimize the integration of heterogeneous data sources (e.g., vehicle telemetry, traffic cameras, sensors) within the Federated Learning framework to improve accuracy andscalability.

You will need to demonstrate you:

  • meet the academic requirements for a PhD offer from the University of Reading.
  • have a good (1st or 2.1) first degree in Computer Science, Statistics, Data Science, Mathematical Science, Meteorology, Physics or closely related subjects
  • are able to effectively organise your time and prioritise tasks to balance PhD studies with GTA responsibilities
  • are able to demonstrate scholarship in developing a publication record in your area of specialist expertise and conduct high quality PhD research.
  • are able to communicate scientific concepts clearly and with enthusiasm and in a way that engages students
  • Have good interpersonal skills and be able to work as part of a team


See candidate pack at the bottom of the page for further details.

Candidates will be provided with training to develop teaching and pedagogical skills,no prior experience of teaching is necessary. On the research side, our package of support includes access to MSc courses and bespoke training through ourPostgraduate and Researcher Collegewill help you in developing your professional skills as a researcher.

Working hours for the teaching portion will be variable during the academic year but will be no more than 20 hours per week. The terms of the offer of funding for the PhD and the offer of employment will rely upon the postholder being registered as a full-time doctoral student.

Successful candidates will be paid an annual salary (£8745) and stipend (£15585 per annum) over the 4 year period and will have PhD fees waived at the Home level (Please note that students liable for international fees will need to pay the difference between these and the home fee rate).Fees for 2025/26 (amount payable each year) can be foundhere.

How do I apply?

You must upload a combined CV and Proposal in pdf format(max size 1 MB)and complete the supporting statement.

Closing date: 04/042025

Interview: week commencing 21/04/2025

We look forward to hearing from you!

Contact details for advert

Contact NameDr Zahra Pooranian

Contact Job TitleLecturer in Computer Science

Contact Email address


Applications from job seekers who require sponsorship to work in the UK are welcome and will be considered alongside all other applications. However, non-UK candidates who do not already have permission to work in the UK should note that by reference to the applicable SOC code for this role, sponsorship will not be possible under the Skilled Worker Route. There is further information about this on theUK Visas and Immigration Website.

The University is committed to having a diverse and inclusive workforce, supports the gender equality Athena SWAN Charter and the Race Equality Charter, and champions LGBT+ equality. Applications for job-share, part-time and flexible working arrangements are welcomed and will be considered in line with business needs.

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for AI Jobs (With Real GitHub Examples)

In the fast-evolving world of artificial intelligence (AI), an impressive portfolio of projects can act as your passport to landing a sought-after role. Even if you’ve aced interviews in the past, employers in AI and machine learning (ML) are increasingly asking candidates to demonstrate hands-on experience through the projects they’ve built and shared online. This is because practical ability often speaks volumes about your suitability for a role—far more than any exam or certification alone could. In this article, we’ll explore how to build an outstanding AI portfolio that catches the eye of recruiters and hiring managers, including: Why an AI portfolio is crucial for job seekers. How to choose AI projects that align with your target roles. Specific project ideas and real GitHub examples to help you stand out. Best practices for showcasing your work, from writing clear READMEs to using Jupyter notebooks effectively. Tips on structuring your GitHub so that employers can instantly see your value. Moreover, we’ll discuss how you can use your portfolio to connect with top employers in AI, with a handy link to our CV-upload page on Artificial Intelligence Jobs for when you’re ready to apply. By the end, you’ll have a clear roadmap to building a portfolio that will help secure interviews—and the AI job—of your dreams.

AI Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

In today's competitive AI job market, nailing a technical interview can be the difference between landing your dream role and getting lost in the crowd. Whether you're looking to break into machine learning, deep learning, NLP (Natural Language Processing), or data science, your problem-solving skills and system design expertise are certain to be put to the test. AI‑related job interviews typically involve a range of coding challenges, algorithmic puzzles, and system design questions. You’ll often be asked to delve into the principles of machine learning pipelines, discuss how to optimise large-scale systems, and demonstrate your coding proficiency in languages like Python, C++, or Java. Adequate preparation not only boosts your confidence but also reduces the likelihood of fumbling through unfamiliar territory. If you’re actively seeking positions at major tech companies or innovative AI start-ups, then check out www.artificialintelligencejobs.co.uk for some of the latest vacancies in the UK. Meanwhile, this blog post will guide you through 30 real coding & system-design questions you’re likely to encounter during your AI job interview. This list is designed to help you practise, anticipate typical question patterns, and stay ahead of the competition. By reading through each question and thinking about the possible approaches, you’ll sharpen your problem-solving skills, time management, and critical thinking. Each question covers fundamental concepts that employers regularly test, ensuring you’re well-equipped for success. Let’s dive right in.

Negotiating Your AI Job Offer: Equity, Bonuses & Perks Explained

Artificial intelligence (AI) has proven itself to be one of the most transformative forces in today’s business world. From smart chatbots in customer service to predictive analytics in finance, AI technologies are reshaping how organisations operate and innovate. As the demand for AI professionals grows, so does the complexity of compensation packages. If you’re a mid‑senior AI professional, you’ve likely seen job offers that include far more than just a base salary—think equity, bonuses, and a range of perks designed to entice you into joining or staying with a company. For many, the focus remains squarely on salary. While that’s understandable—after all, your monthly take‑home pay is what covers day-to-day expenses—limiting your negotiations to salary alone can leave considerable value on the table. From stock options in ambitious startups to sign‑on bonuses that ‘buy you out’ of your current contract, modern AI job offers often include elements that can significantly boost your long-term wealth and job satisfaction. This article aims to shed light on the full scope of AI compensation—specifically focusing on how equity, bonuses, and perks can enhance (or sometimes detract from) the overall value of your package. We’ll delve into how these elements work in practice, what to watch out for, and how to navigate the negotiation process effectively. Our goal is to provide mid‑senior AI professionals with the insights and tools to land a holistic compensation deal that accurately reflects their technical expertise, leadership potential, and strategic importance in this fast-moving field. Whether you’re eyeing a leadership role in machine learning at an established tech giant, or you’re considering a pioneering position at a disruptive AI startup, the knowledge in this guide will help you weigh the merits of base salary alongside the potential riches—and risks—of equity, bonuses, and other benefits. By the end, you’ll have a clearer sense of how to align your compensation with both your immediate lifestyle needs and long-term career aspirations.