Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

GPU Performance Engineer

Oxford Nanopore Technologies
Oxford
1 year ago
Applications closed

Related Jobs

View all jobs

Senior Machine Learning Engineer - AI & GPU Performance

Senior Machine Learning Engineer - AI & GPU Performance

Senior Machine Learning - AI & GPU Performance

Machine Learning Performance Engineer

Machine Learning Performance Engineer, London

Machine Learning Performance Engineer, London

Oxford Nanopore Technologies is headquartered at the Oxford Science Park outside Oxford, UK, with satellite offices and a commercial presence in many global locations across the US, APAC and Europe.

Oxford Nanopore employs from multiple subject areas including nanopore science, molecular biology and applications, informatics, engineering, electronics, manufacturing and commercialisation. The management team, led by CEO Dr Gordon Sanghera, has a track record of delivering disruptive technologies to the market.

Oxford Nanopore’s sequencing platform is the only technology that offers real-time analysis, in fully scalable formats from pocket to population scale, that can analyse native DNA or RNA and sequence any length of fragment to achieve short to ultra-long read lengths. Our goal is to enable the analysis of any living thing, by anyone, anywhere!

We are seeking a highly skilled and innovative individual to join our team as a GPU Performance Engineer. In this role, you will focus on optimizing machine learning inference for our open-source software, including the base caller dorado, by writing high-performance code for GPUs using CUDA, OpenCL, Metal, and other similar technologies. The majority of our machine learning inference work is deep-learning based.

Responsibilities:Collaborate with the development team and experienced C++ engineers to optimize machine learning inference algorithms for high-performance execution on GPUs. Implement, benchmark, and refine high-performance computing solutions using CUDA, OpenCL, Metal, or other GPU programming frameworks. Analyze and optimize the performance of existing codebases, identifying bottlenecks and implementing solutions to improve efficiency. Focus on optimizing the performance of bioinformatics tools, such as alignment and variant calling. Work closely with software engineers, data scientists, and researchers to integrate performance improvements into our machine learning pipeline. Stay up-to-date with the latest developments in GPU programming and high-performance computing, and apply this knowledge to enhance our software. Document and communicate optimization strategies and results to both technical and non-technical stakeholders.

What We're Looking For...

Extensive experience with GPU programming and high-performance computing using CUDA, OpenCL, Metal, or similar technologies. Proven track record of optimizing code for performance and efficiency on GPU architectures. Strong programming skills in C/C++, Python, and other relevant languages. Familiarity with machine learning frameworks such as TensorFlow, PyTorch, or similar is a plus. Ability to work independently and collaboratively within a team environment. Excellent problem-solving skills and attention to detail. Good communication and interpersonal skills with the ability to explain complex technical concepts to a diverse audience.

Preferred Qualifications:A degree in computer science, engineering, mathematics, physics, or a related field, or equivalent experience. Experience with optimizing machine learning inference for bioinformatics or related applications. Knowledge of low-level programming and performance profiling tools. Experience with open-source software development and contribution. Bioinformatics experience is nice to have but not expected.

Why Join Us?

At Oxford Nanopore Technologies, we are committed to pushing the boundaries of what is possible with single-molecule sensing platforms. By joining our team, you will have the opportunity to work on cutting-edge technology that has the potential to revolutionize fields such as genomics, diagnostics, and more. We offer a dynamic and collaborative work environment where innovation and creativity are encouraged.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write an AI CV that Beats ATS (UK examples)

Writing an AI CV for the UK market is about clarity, credibility, and alignment. Recruiters spend seconds scanning the top third of your CV, while Applicant Tracking Systems (ATS) check for relevant skills & recent impact. Your goal is to make both happy without gimmicks: plain structure, sharp evidence, and links that prove you can ship to production. This guide shows you exactly how to do that. You’ll get a clean CV anatomy, a phrase bank for measurable bullets, GitHub & portfolio tips, and three copy-ready UK examples (junior, mid, research). Paste the structure, replace the details, and tailor to each job ad.

AI Recruitment Trends 2025 (UK): What Job Seekers Must Know About Today’s Hiring Process

Summary: UK AI hiring has shifted from titles & puzzle rounds to skills, portfolios, evals, safety, governance & measurable business impact. This guide explains what’s changed, what to expect in interviews, and how to prepare—especially for LLM application, MLOps/platform, data science, AI product & safety roles. Who this is for: AI/ML engineers, LLM engineers, data scientists, MLOps/platform engineers, AI product managers, applied researchers & safety/governance specialists targeting roles in the UK.

Why AI Careers in the UK Are Becoming More Multidisciplinary

Artificial intelligence is no longer a single-discipline pursuit. In the UK, employers increasingly want talent that can code and communicate, model and manage risk, experiment and empathise. That shift is reshaping job descriptions, training pathways & career progression. AI is touching regulated sectors, sensitive user journeys & public services — so the work now sits at the crossroads of computer science, law, ethics, psychology, linguistics & design. This isn’t a buzzword-driven change. It’s happening because real systems are deployed in the wild where people have rights, needs, habits & constraints. As models move from lab demos to products that diagnose, advise, detect fraud, personalise education or generate media, teams must align performance with accountability, safety & usability. The UK’s maturing AI ecosystem — from startups to FTSE 100s, consultancies, the public sector & universities — is responding by hiring multidisciplinary teams who can anticipate social impact as confidently as they ship features. Below, we unpack the forces behind this change, spotlight five disciplines now fused with AI roles, show what it means for UK job-seekers & employers, and map practical steps to future-proof your CV.