Global Head, Data Science

S&P Global Inc.
London
2 days ago
Create job alert
Overview

Grade Level (for internal use): 15

The Enterprise Solutions Technology team is dedicated to delivering next-generation, high-scale technology platforms through resilient architecture, data excellence, and engineering innovation. Our mission is to enhance our digital presence and improve customer engagement across various domains, including Lending, Corporate Actions, Tax, Regulatory & Compliance, Regulatory Reporting, Public Markets, and Private Markets portfolio monitoring. We are seeking a Data Scientist Leader to lead the design, development, and operation of high-rigor analytical and machine-learning systems across a complex, regulated financial-services estate. This is a strategy-led and hands-on applied data science and ML engineering role, responsible for defining the AI/ML roadmap for Enterprise Solutions while also building high-rigor analytical and predictive models for anomaly detection, variance analysis, drift detection, market and behavioral signals, forecasting, and prediction. The expectation is production-grade models, comparable in rigor to fraud, risk, or surveillance systems.

What\'s In for you: The role exists to ensure AI/ML strategy is sound and that analytical models are correct, explainable, reliable in production, and able to withstand operational and regulatory scrutiny. You will work closely with engineering, data platform, and product teams to take models from problem definition through to production operation, including feature engineering, back-testing, deployment, monitoring, and ongoing performance management. You will get involved early in complex or high-risk analytical problems and step in when models degrade or fail in production. A key part of the role is knowing when to apply advanced modelling, when simpler approaches are sufficient, and when modelling is not appropriate. You may have limited line management responsibility, but impact is driven primarily through hands-on technical contribution, review, and influence.

At S&P Global, we are committed to fostering a connected and engaged workplace where all individuals have access to opportunities based on their skills, experience, and contributions. Our hiring practices emphasize fairness, transparency, and merit, ensuring that we attract and retain top talent. By valuing different perspectives and promoting a culture of respect and collaboration, we drive innovation and power global markets. If you need an accommodation during the application process due to a disability, please send an email to: and your request will be forwarded to the appropriate person. US Candidates Only: The EEO is the Law Poster describes discrimination protections under federal law. Pay Transparency Nondiscrimination Provision.

Responsibilities
  • Strong experience delivering applied data science and machine learning in production within banking, capital markets, or similarly regulated, data-intensive environments.
  • Deep grounding in statistics, machine learning, time-series analysis, and predictive modelling, with experience building models under real operational constraints.
  • Hands-on ownership of the full model lifecycle: data exploration, feature engineering, model development, back-testing, validation, deployment, monitoring, and ongoing tuning.
  • Extensive experience working with large, complex, and imperfect datasets, including missing data, outliers, regime changes, noisy labels, and evolving schemas.
  • Strong understanding of production ML system design, including batch vs real-time inference, model serving patterns, performance trade-offs, and failure modes.
  • Experience operating models in production over time, including versioning, drift detection, retraining strategies, and incident response when models misbehave.
  • Practical experience designing explainable models suitable for regulated environments, including feature attribution and model transparency techniques.
  • Experience combining statistical models, ML, semantic models, and rules-based logic where needed to achieve accuracy, stability, and explainability.
  • Strong focus on data quality, anomaly detection, and monitoring, including metrics that surface real issues and drive sustained improvement.
Qualifications
  • 20+ years working with analytics, data science, or ML systems in production, with significant experience in financial services or other regulated, high-availability domains.
  • Comfortable working directly with data, models, and code, and collaborating closely with software engineers and platform teams.
  • Pragmatic and outcome-driven; measures success by models that run reliably in production, adapt to changing conditions, and withstand scrutiny.
  • Clear communicator who can explain modelling choices, assumptions, and limitations to engineers, product partners, and senior stakeholders.
  • Acts as a technical mentor to other data scientists through review, pairing, and example, limited people management where appropriate.
Benefits
  • Health & Wellness: Health care coverage designed for the mind and body.
  • Flexible Downtime: Generous time off helps keep you energized for your time on.
  • Continuous Learning: Access a wealth of resources to grow your career and learn valuable new skills.
  • Invest in Your Future: Secure your financial future through competitive pay, retirement planning, a continuing education program with a company-matched student loan contribution, and financial wellness programs.
  • Family Friendly Perks: Perks for partners and little ones, with some best-in-class benefits for families.
  • Beyond the Basics: From retail discounts to referral incentive awards—small perks can make a big difference.


#J-18808-Ljbffr

Related Jobs

View all jobs

Global Head of AI, Data Science & Strategy

Western Europe Practice Head - Data Science (Machine Learning/Artificial Intelligence (ML/AI)

Lead Data Scientist - Pricing

Head of Production ML & Data Science (Finance)

Head of Data Science Technology (Product, Engineering, Design) · London ·

Head of Data Science

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.