National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Generative AI - Executive Director

JPMorgan Chase & Co.
London
1 year ago
Applications closed

Related Jobs

View all jobs

Artificial Intelligence Engineer

Artificial Intelligence Engineer

Machine Learning Engineer - Generative AI (Basé à London)

Machine Learning Engineer - Generative AI (Basé à London)

Machine Learning Engineer - Generative AI

Machine Learning/ Generative AI Consultant

We are thrilled to introduce you to our team at the Chief Data and Analytics Office (CDAO) organization. As the driving force behind the firmwide adoption of artificial intelligence (AI) across our company, our dedicated team is responsible for overseeing data use, governance, and controls around the build, adoption and maintenance of cloud infrastructure, data and AI/ML products. With a focus on both effectiveness and responsibility, we strive to push the boundaries of innovation while ensuring ethical and sustainable practices. Join us on this exciting journey as we revolutionize the way we leverage data and analytics to shape the future of our organization.

As a Generative AI Executive Director within our CDAO organization, you will play a crucial role in ensuring the smooth operation and optimization of our LLM aided AI products. Our firm-wide team focuses on developing scalable LLM-based products and reusable back-end APIs. You will engage in close collaboration with cross-functional teams, including the ML Centre of Excellence, AI Research, Cloud Engineering, and others, to foster innovation and deliver solutions that yield a high Return-on-Investment (RoI). You will ensure that our APIs are built with scalability in mind, allowing them to efficiently handle a large number of requests without compromising performance. By designing APIs with a clear separation of concerns and well-defined interfaces, we enable other teams and developers to leverage our APIs to build their own ML products and solutions, fostering a culture of collaboration and efficiency. 

Job Responsibilities 

Combine vast data assets with cutting-edge AI, including LLMs and Multimodal LLMs Bridge scientific research and software engineering, requiring expertise in both domains Collaborate closely with cloud and SRE teams while leading the design and delivery of production architectures

Required qualifications, capabilities, and skills 

PhD in a quantitative discipline, . Computer Science, Mathematics, Statistics. Experience in an individual contributor role in ML engineering. Proven track record in building and leading teams of experienced ML engineers/scientists. Solid understanding of the fundamentals of statistics, optimization, and ML theory, focusing on NLP and/or Computer Vision algorithms. Hands-on experience in implementing distributed/multi-threaded/scalable applications (incl. frameworks such as Ray, Horovod, DeepSpeed, . Ability to understand and align with business expectations, and write clear and concise OKRs (Objectives and Key Results). Experience as a "Responsible Owner" for ML services in enterprise environments. Excellent grasp of computer science fundamentals and SDLC best practices. Ability to understand business objectives and align ML problem definition. Strong communication skills to effectively convey technical information and ideas at all levels, building trust with stakeholders.

Preferred qualifications, capabilities, and skills 

Experience in designing and implementing pipelines using DAGs (., Kubeflow, DVC, Ray). Ability to construct batch and streaming microservices exposed as gRPC and/or GraphQL endpoints. Demonstrable experience in parameter-efficient fine-tuning, model quantization, and quantization-aware fine-tuning of LLM models. Hands-on knowledge of Chain-of-Thoughts, Tree-of-Thoughts, Graph-of-Thoughts prompting strategies.
National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Get a Better AI Job After a Lay-Off or Redundancy

Being made redundant or laid off can feel like the rug has been pulled from under you. Whether part of a wider company restructuring, budget cuts, or market shifts in tech, many skilled professionals in the AI industry have recently found themselves unexpectedly jobless. But while redundancy brings immediate financial and emotional stress, it can also be a powerful catalyst for career growth. In the fast-evolving field of artificial intelligence, where new roles and specialisms emerge constantly, bouncing back stronger is not only possible—it’s likely. In this guide, we’ll walk you through a step-by-step action plan for turning redundancy into your next big opportunity. From managing the shock to targeting better AI jobs, updating your CV, and approaching recruiters the smart way, we’ll help you move from setback to comeback.

AI Jobs Salary Calculator 2025: Work Out Your Market Value in Seconds

Why your 2024 salary data is already outdated “Am I being paid what I’m worth?” It is the question that creeps in whenever you update your CV, see a former colleague announce a punchy pay rise on LinkedIn, or notice a recruiter slide into your inbox with a role that looks eerily similar to your current one—only advertised at £20k more. Artificial intelligence moves faster than any other hiring market. New frameworks are open‑sourced overnight, venture capital floods specific niches without warning, & entire job titles—Prompt Engineer, LLM Ops Specialist—appear in the time it takes most industries to schedule a meeting. In that environment, salary guides published only a year ago already look like historical curiosities. To give AI professionals an up‑to‑the‑minute benchmark, ArtificialIntelligenceJobs.co.uk has built a simple yet powerful salary‑calculation formula. By combining three variables—role, UK region, & seniority—you can estimate a realistic 2025 salary band in less than a minute. This article explains that formula, unpacks the latest trends driving pay, & offers concrete steps to boost your personal market value over the next 90 days.

How to Present AI Models to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

In today’s competitive job market, AI professionals are expected to do more than just build brilliant algorithms—they must also explain them clearly to stakeholders who may have no technical background. Whether you're applying for a role as a machine learning engineer, data scientist, or AI consultant, your ability to articulate complex models in simple terms is fast becoming one of the most valued soft skills in interviews and on the job. This guide will help you master the art of public speaking for AI roles, offering tips on structuring presentations, designing effective slides, and using storytelling to make your work resonate with any audience.