Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

GenAI Architect

HCLTech
London
8 months ago
Applications closed

Related Jobs

View all jobs

Data Scientist

NLP Data Scientist

Senior Data Scientist (GenAI)

Machine Learning Engineer - GenAI

Machine Learning Engineer - GenAI

Machine Learning and AI Engineer

Role: GenAI Architect

Duration: long term


Roles and Responsibilities:

Educational Qualifications:

Graduate or Doctorate degree in information technology, Neuroscience, Business Informatics, Biomedical Engineering, Computer Science, Artificial Intelligence, or a related field.

Specialization in Natural Language Processing is preferred.


Experience Requirements:

  • 8-10 years of experience in developing Data Science, AI, and ML solutions, with a specific focus on generative AI and LLMs in the Finance/Telecomm/LSH/Manufacturing/Retail domain.
  • Prior experience in identifying new opportunities to optimize the business through analytics, AI/ML and use case prioritization.
  • The individual should be a thought leader having a well-balanced analytical business acumen, domain, and technical expertise.
  • Large Language Model Expertise: Experience in working with and fine-tuning Large Language Models (LLMs), including the design, optimization of NLP systems, frameworks, and tools.
  • Application Development with LLMs: Experience in building scalable applications using LLMs, utilizing frameworks such as LangChain, LlamaIndex, etc and productionizing machine learning and AI models.
  • Language Model Development: Utilize off-the-shelf LLM services, such as Azure OpenAI, to integrate LLM capabilities into applications.
  • Cloud Computing Expertise: Proven architect kind of experience in cloud computing, particularly with Azure Cloud Services.
  • Technical Proficiency: Strong skills in UNIX/Linux environments and command-line tools.
  • Programming and ML Skills: Proficiency in Python, with a deep understanding of machine learning algorithms, deep learning, and generative models.
  • Advanced AI Skills and Testing: Familiarity with deep learning frameworks (e.g., TensorFlow, PyTorch), hands-on experience in deploying AI/ML solutions as a service/REST API on Cloud or Kubernetes, and proficiency in testing of developed AI components.
  • Responsibilities also include data analysis/preprocessing for training and fine-tuning language models. Also, solves virtually all issues around privacy, real-time, sparce data collection, passive data collection and security and regulatory requirements.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write an AI CV that Beats ATS (UK examples)

Writing an AI CV for the UK market is about clarity, credibility, and alignment. Recruiters spend seconds scanning the top third of your CV, while Applicant Tracking Systems (ATS) check for relevant skills & recent impact. Your goal is to make both happy without gimmicks: plain structure, sharp evidence, and links that prove you can ship to production. This guide shows you exactly how to do that. You’ll get a clean CV anatomy, a phrase bank for measurable bullets, GitHub & portfolio tips, and three copy-ready UK examples (junior, mid, research). Paste the structure, replace the details, and tailor to each job ad.

AI Recruitment Trends 2025 (UK): What Job Seekers Must Know About Today’s Hiring Process

Summary: UK AI hiring has shifted from titles & puzzle rounds to skills, portfolios, evals, safety, governance & measurable business impact. This guide explains what’s changed, what to expect in interviews, and how to prepare—especially for LLM application, MLOps/platform, data science, AI product & safety roles. Who this is for: AI/ML engineers, LLM engineers, data scientists, MLOps/platform engineers, AI product managers, applied researchers & safety/governance specialists targeting roles in the UK.

Why AI Careers in the UK Are Becoming More Multidisciplinary

Artificial intelligence is no longer a single-discipline pursuit. In the UK, employers increasingly want talent that can code and communicate, model and manage risk, experiment and empathise. That shift is reshaping job descriptions, training pathways & career progression. AI is touching regulated sectors, sensitive user journeys & public services — so the work now sits at the crossroads of computer science, law, ethics, psychology, linguistics & design. This isn’t a buzzword-driven change. It’s happening because real systems are deployed in the wild where people have rights, needs, habits & constraints. As models move from lab demos to products that diagnose, advise, detect fraud, personalise education or generate media, teams must align performance with accountability, safety & usability. The UK’s maturing AI ecosystem — from startups to FTSE 100s, consultancies, the public sector & universities — is responding by hiring multidisciplinary teams who can anticipate social impact as confidently as they ship features. Below, we unpack the forces behind this change, spotlight five disciplines now fused with AI roles, show what it means for UK job-seekers & employers, and map practical steps to future-proof your CV.