GCP Engineer

Gravitai Ltd
London
9 months ago
Applications closed

Related Jobs

View all jobs

Artificial Intelligence Engineer

Artificial Intelligence Engineer

Artificial Intelligence Engineer

Artificial Intelligence Engineer

Artificial Intelligence Engineer

Artificial Intelligence Engineer

We’re a small team with really big ambitions, both for what we want to achieve and also for the culture we’re building. We want to create a company that remains people-focused, harnessing the power of empowered and engaged teams. As we scale, we want people to really own what they do and be given the autonomy and freedom to make mistakes, learn, and create something meaningful.

If you would like to know a bit more about this opportunity, or are considering applying, then please read the following job information.We all work incredibly hard because we really care about what Gravitai represents and stands for – we’re looking for exceptional people who are proactive, hungry to learn, and want to put their pride in our collective achievements.We believe that having diversity in age, background, gender identity, race, sexual orientation, physical or mental ability, ethnicity, and perspective will make us an infinitely better company.Health, Safety, and Well-being are at the heart of everything we do.Purpose The Google Cloud Platform (GCP) Data Engineer will be responsible for designing, developing, and maintaining scalable data solutions in the cloud.The ideal candidate will have strong experience with GCP services, data pipelines, ETL processes, and big data technologies. You will work closely with data scientists, analysts, and software engineers to optimise data workflows and ensure the integrity and security of data within the GCP ecosystem.You'll work closely with developers, end-users, and stakeholders to deliver projects smoothly and improve the system over time.We’re looking for someone who’s not just technical but also enjoys working with people and solving real-world business challenges.Main Duties and Responsibilities

Design and Develop Data Pipelines: Build and implement scalable data pipelines using GCP services, including Cloud Dataflow, Cloud Dataproc, Apache Beam, and Cloud Composer (Apache Airflow).ETL/ELT Workflow Management: Develop, optimise, and maintain ETL/ELT workflows for structured and unstructured data.Big Data Solutions: Manage and optimise big data environments leveraging BigQuery, Cloud Storage, Pub/Sub, and Data Fusion.Data Integrity and Security: Ensure data quality, security, and governance by following industry best practices.Database Expertise: Work with both SQL and NoSQL databases, such as BigQuery, Cloud SQL, Firestore, and Spanner.Automation and Infrastructure as Code: Automate data workflows using Terraform, CI/CD pipelines, and Infrastructure as Code (IaC) methodologies.Performance Monitoring and Troubleshooting: Identify and resolve performance bottlenecks, failures, and latency issues.Cross-Functional Collaboration: Work closely with analytics, AI/ML, and business intelligence teams to integrate data solutions.Real-Time and Batch Processing: Implement efficient data management strategies for both real-time and batch processing.Technical Documentation: Maintain comprehensive documentation of technical specifications, workflows, and best practices.Experience & Expertise

Education: Bachelor’s Degree, Information Systems, or a related field (Preferred).Experience3+ years of hands-on experience in data engineering with GCP.Strong proficiency in SQL, Python, and/or Java/Scala for data processing.Practical experience with BigQuery, Cloud Dataflow, Cloud Dataproc, and Apache Beam.Experience with event-driven streaming platforms such as Apache Kafka or Pub/Sub.Familiarity with Terraform, Kubernetes (GKE), and Cloud Functions.Strong understanding of data modeling, data lakes, and data warehouse design.Knowledge of Airflow, Data Catalog, and IAM security policies.Exposure to DevOps practices, CI/CD pipelines, and containerisation (Docker, Kubernetes) is a plus.Skills:Strong analytical and problem-solving abilities.Ability to thrive in an agile, fast-paced environment.Preferred Qualifications

Certification: GCP Professional Data Engineer Certification (Required).Machine Learning Integration: Experience with ML pipelines using Vertex AI or TensorFlow on GCP.Cloud Architecture: Familiarity with multi-cloud and hybrid cloud environments.Benefits 28 days of holiday plus Bank Holidays.Regular socials & team events including Christmas events between all offices and staff (incl. remote).Remote-first position, preferably for UK-based candidates, with the option of contract-based role for non-UK staff.

#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Neurodiversity in AI Careers: Turning Different Thinking into a Superpower

The AI industry moves quickly, breaks rules & rewards people who see the world differently. That makes it a natural home for many neurodivergent people – including those with ADHD, autism & dyslexia. If you’re neurodivergent & considering a career in artificial intelligence, you might have been told your brain is “too much”, “too scattered” or “too different” for a technical field. In reality, many of the strengths that come with ADHD, autism & dyslexia map beautifully onto AI work – from spotting patterns in data to creative problem-solving & deep focus. This guide is written for AI job seekers in the UK. We’ll explore: What neurodiversity means in an AI context How ADHD, autism & dyslexia strengths match specific AI roles Practical workplace adjustments you can ask for under UK law How to talk about your neurodivergence during applications & interviews By the end, you’ll have a clearer picture of where you might thrive in AI – & how to set yourself up for success.

AI Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we head into 2026, the AI hiring market in the UK is going through one of its biggest shake-ups yet. Economic conditions are still tight, some employers are cutting headcount, & AI itself is automating whole chunks of work. At the same time, demand for strong AI talent is still rising, salaries for in-demand skills remain high, & new roles are emerging around AI safety, governance & automation. Whether you are an AI job seeker planning your next move or a recruiter trying to build teams in a volatile market, understanding the key AI hiring trends for 2026 will help you stay ahead. This guide breaks down the most important trends to watch, what they mean in practice, & how to adapt – with practical actions for both candidates & hiring teams.

How to Write an AI CV that Beats ATS (UK examples)

Writing an AI CV for the UK market is about clarity, credibility, and alignment. Recruiters spend seconds scanning the top third of your CV, while Applicant Tracking Systems (ATS) check for relevant skills & recent impact. Your goal is to make both happy without gimmicks: plain structure, sharp evidence, and links that prove you can ship to production. This guide shows you exactly how to do that. You’ll get a clean CV anatomy, a phrase bank for measurable bullets, GitHub & portfolio tips, and three copy-ready UK examples (junior, mid, research). Paste the structure, replace the details, and tailor to each job ad.