Fraud Data Scientist

Barclays
Northampton
2 days ago
Create job alert

As a Fraud Data Scientist at Barclays, you will be responsible for the development and enhancement of fraud detection systems. Applying advanced analytical methods and data-driven approaches, you’ll improve our ability to detect and prevent fraud across a variety of banking products and services. You’ll work closely with other experts in the field, helping us stay one step ahead in addressing fraud risks.


To be successful as a Fraud Data Scientist, you should have experience with:



  • A Degree in Mathematics, Statistics, Computer Science, or a related field (or equivalent work experience).


  • Experience in fraud detection, scam prevention, or cybersecurity, ideally in a financial services or banking environment.


  • Proficiency in data analysis, with hands‑on experience using tools and languages such as Python, R, SQL and machine learning frameworks.



You may be assessed on the key critical skills relevant for success in role, such as risk and controls, change and transformation, business acumen strategic thinking and digital and technology, as well as job‑specific technical skills.


This role will be located at our Northampton office.


Purpose of the role

To use innovative data analytics and machine learning techniques to extract valuable insights from the bank's data reserves, leveraging these insights to inform strategic decision‑making, improve operational efficiency, and drive innovation across the organisation.


Accountabilities

  • Identification, collection, extraction of data from various sources, including internal and external sources.
  • Performing data cleaning, wrangling, and transformation to ensure its quality and suitability for analysis.
  • Development and maintenance of efficient data pipelines for automated data acquisition and processing.
  • Design and conduct of statistical and machine learning models to analyse patterns, trends, and relationships in the data.
  • Development and implementation of predictive models to forecast future outcomes and identify potential risks and opportunities.
  • Collaborate with business stakeholders to seek out opportunities to add value from data through Data Science.

Analyst Expectations

  • To perform prescribed activities in a timely manner and to a high standard consistently driving continuous improvement.
  • Requires in‑depth technical knowledge and experience in their assigned area of expertise
  • Thorough understanding of the underlying principles and concepts within the area of expertise
  • They lead and supervise a team, guiding and supporting professional development, allocating work requirements and coordinating team resources.
  • If the position has leadership responsibilities, People Leaders are expected to demonstrate a clear set of leadership behaviours to create an environment for colleagues to thrive and deliver to a consistently excellent standard. The four LEAD behaviours are: L – Listen and be authentic, E – Energise and inspire, A – Align across the enterprise, D – Develop others.
  • OR for an individual contributor, they develop technical expertise in work area, acting as an advisor where appropriate.
  • Will have an impact on the work of related teams within the area.
  • Partner with other functions and business areas.
  • Takes responsibility for end results of a team’s operational processing and activities.
  • Escalate breaches of policies / procedure appropriately.
  • Take responsibility for embedding new policies/ procedures adopted due to risk mitigation.
  • Advise and influence decision making within own area of expertise.
  • Take ownership for managing risk and strengthening controls in relation to the work you own or contribute to. Deliver your work and areas of responsibility in line with relevant rules, regulation and codes of conduct.
  • Maintain and continually build an understanding of how own sub‑function integrates with function, alongside knowledge of the organisations products, services and processes within the function.
  • Demonstrate understanding of how areas coordinate and contribute to the achievement of the objectives of the organisation sub‑function.
  • Make evaluative judgements based on the analysis of factual information, paying attention to detail.
  • Resolve problems by identifying and selecting solutions through the application of acquired technical experience and will be guided by precedents.
  • Guide and persuade team members and communicate complex / sensitive information.
  • Act as contact point for stakeholders outside of the immediate function, while building a network of contacts outside team and external to the organisation.

All colleagues will be expected to demonstrate the Barclays Values of Respect, Integrity, Service, Excellence and Stewardship – our moral compass, helping us do what we believe is right. They will also be expected to demonstrate the Barclays Mindset – to Empower, Challenge and Drive – the operating manual for how we behave.


#J-18808-Ljbffr

Related Jobs

View all jobs

Fraud Data Scientist

Fraud Data Scientist: Predictive Analytics for Banking Risk

Fraud Data Scientist: Predictive Analytics for Banking Risk

Data Scientist – Fraud Strategic Analytics Lead

Fraud & AML Data Scientist — Azure Databricks & BI Expert

Fraud & AML Data Scientist — Azure Databricks & BI Expert

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Maths for AI Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are a software engineer, data scientist or analyst looking to move into AI or you are a UK undergraduate or postgraduate in computer science, maths, engineering or a related subject applying for AI roles, the maths can feel like the biggest barrier. Job descriptions say “strong maths” or “solid fundamentals” but rarely spell out what that means day to day. The good news is you do not need a full maths degree worth of theory to start applying. For most UK roles like Machine Learning Engineer, AI Engineer, Data Scientist, Applied Scientist, NLP Engineer or Computer Vision Engineer, the maths you actually use again & again is concentrated in a handful of topics: Linear algebra essentials Probability & statistics for uncertainty & evaluation Calculus essentials for gradients & backprop Optimisation basics for training & tuning A small amount of discrete maths for practical reasoning This guide turns vague requirements into a clear checklist, a 6-week learning plan & portfolio projects that prove you can translate maths into working code.

Neurodiversity in AI Careers: Turning Different Thinking into a Superpower

The AI industry moves quickly, breaks rules & rewards people who see the world differently. That makes it a natural home for many neurodivergent people – including those with ADHD, autism & dyslexia. If you’re neurodivergent & considering a career in artificial intelligence, you might have been told your brain is “too much”, “too scattered” or “too different” for a technical field. In reality, many of the strengths that come with ADHD, autism & dyslexia map beautifully onto AI work – from spotting patterns in data to creative problem-solving & deep focus. This guide is written for AI job seekers in the UK. We’ll explore: What neurodiversity means in an AI context How ADHD, autism & dyslexia strengths match specific AI roles Practical workplace adjustments you can ask for under UK law How to talk about your neurodivergence during applications & interviews By the end, you’ll have a clearer picture of where you might thrive in AI – & how to set yourself up for success.

AI Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we head into 2026, the AI hiring market in the UK is going through one of its biggest shake-ups yet. Economic conditions are still tight, some employers are cutting headcount, & AI itself is automating whole chunks of work. At the same time, demand for strong AI talent is still rising, salaries for in-demand skills remain high, & new roles are emerging around AI safety, governance & automation. Whether you are an AI job seeker planning your next move or a recruiter trying to build teams in a volatile market, understanding the key AI hiring trends for 2026 will help you stay ahead. This guide breaks down the most important trends to watch, what they mean in practice, & how to adapt – with practical actions for both candidates & hiring teams.