Fraud Data Scientist

Barclays
Manchester
3 weeks ago
Create job alert

As a Fraud Data Scientist at Barclays, you will be responsible for the development and enhancement of fraud detection systems. Applying advanced analytical methods and data-driven approaches, you’ll improve our ability to detect and prevent fraud across a variety of banking products and services. You’ll work closely with other experts in the field, helping us stay one step ahead in addressing fraud risks.


To be successful as a Fraud Data Scientist, you should have:



  • A Degree in Mathematics, Statistics, Computer Science, or a related field (or equivalent work experience).
  • Experience in fraud detection, scam prevention, or cybersecurity, ideally in a financial services or banking environment.
  • Proficiency in data analysis, with hands‑on experience using tools and languages such as Python, R, SQL and machine learning frameworks.

Some other highly valued skills may include:



  • Experience in leading and managing a team of data scientists or similar technical professionals.

You may be assessed on the key critical skills relevant for success in role, such as risk and controls, change and transformation, business acumen strategic thinking and digital and technology, as well as job-specific technical skills.


This role will be located at our Northampton office.


Purpose of the role

To use innovative data analytics and machine learning techniques to extract valuable insights from the bank's data reserves, leveraging these insights to inform strategic decision‑making, improve operational efficiency, and drive innovation across the organisation.


Accountabilities

  • Identification, collection, extraction of data from various sources, including internal and external sources.
  • Performing data cleaning, wrangling, and transformation to ensure its quality and suitability for analysis.
  • Development and maintenance of efficient data pipelines for automated data acquisition and processing.
  • Design and conduct of statistical and machine learning models to analyse patterns, trends, and relationships in the data.
  • Development and implementation of predictive models to forecast future outcomes and identify potential risks and opportunities.
  • Collaborate with business stakeholders to seek out opportunities to add value from data through Data Science.

Assistant Vice President Expectations

  • To advise and influence decision making, contribute to policy development and take responsibility for operational effectiveness. Collaborate closely with other functions/ business divisions.
  • Lead a team performing complex tasks, using well developed professional knowledge and skills to deliver on work that impacts the whole business function. Set objectives and coach employees in pursuit of those objectives, appraisal of performance relative to objectives and determination of reward outcomes.
  • If the position has leadership responsibilities, People Leaders are expected to demonstrate a clear set of leadership behaviours to create an environment for colleagues to thrive and deliver to a consistently excellent standard. The four LEAD behaviours are: L – Listen and be authentic, E – Energise and inspire, A – Align across the enterprise, D – Develop others.
  • OR for an individual contributor, they will lead collaborative assignments and guide team members through structured assignments, identify the need for the inclusion of other areas of specialisation to complete assignments. They will identify new directions for assignments and/or projects, identifying a combination of cross‑functional methodologies or practices to meet required outcomes.
  • Consult on complex issues; providing advice to People Leaders to support the resolution of escalated issues.
  • Identify ways to mitigate risk and developing new policies/procedures in support of the control and governance agenda.
  • Take ownership for managing risk and strengthening controls in relation to the work done.
  • Perform work that is closely related to that of other areas, which requires understanding of how areas coordinate and contribute to the achievement of the objectives of the organisation sub‑function.
  • Collaborate with other areas of work, for business aligned support areas to keep up to speed with business activity and the business strategy.
  • Engage in complex analysis of data from multiple sources of information, internal and external sources such as procedures and practises (in other areas, teams, companies, etc.) to solve problems creatively and effectively.
  • Communicate complex information. 'Complex' information could include sensitive information or information that is difficult to communicate because of its content or its audience.
  • Influence or convince stakeholders to achieve outcomes.

All colleagues will be expected to demonstrate the Barclays Values of Respect, Integrity, Service, Excellence and Stewardship – our moral compass, helping us do what we believe is right. They will also be expected to demonstrate the Barclays Mindset – to Empower, Challenge and Drive – the operating manual for how we behave.


#J-18808-Ljbffr

Related Jobs

View all jobs

Fraud Data Scientist & ML Risk Analytics Lead

Fraud Data Scientist — ML & Risk Detection

Data Scientist – Fraud Strategic Analytics Associate

Senior Data Scientist – Fraud Analytics & Quality Intelligence

Payments Operations Data Scientist: Fraud & Growth

Senior Data Scientist

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.