Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Founding Machine Learning Engineer

Heart Mind Talent
Nottingham
10 months ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer

Senior Machine Learning | AI Engineer

Lead Data Scientist

Junior Data Scientist

Junior Data Scientist

As our Founding Engineer with a specialization in machine learning data engineering and model implementation, you'll have great experience building data pipelines and distributed processing systems. You’ll be responsible for designing and implementing robust, scalable systems, and efficient distributed processing frameworks that will power our core product.


We are a VC backed, remote-first business looking to complete our Founding Team.


Why Join Us:

  • Ambitious Challenges: We are using Generative AI (LLMs and Agents) to solve some of the most pressing challenges in cybersecurity today. You’ll be working at the cutting edge of this field, aiming to deliver significant breakthroughs for security teams.
  • Expert Team: We are a team of hands-on leaders with deep experience in Big Tech and Scale-ups. Our team has been part of the leadership teams behind multiple acquisitions and an IPO.
  • Impactful Work: Cybersecurity is becoming a challenge to most companies and helping them mitigate risk ultimately helps drive better outcomes for all of us.


What You Need to Be Successful:

  • Extensive Experience in backend development: Strong proficiency in backend languages and frameworks such as Python, Java, Go, or Node.js, and experience with building microservices.
  • Data Pipeline Mastery: Expertise in building and optimizing data pipelines using tools like Apache Kafka, Apache Spark, or AWS Glue.
  • Distributed Systems Knowledge: Experience designing and implementing distributed systems for parallel data processing, with a strong understanding of tools like Hadoop, Spark, or Flink.
  • Database Proficiency: Deep knowledge of both relational databases (e.g., PostgreSQL, MySQL) and NoSQL databases (e.g., Cassandra, MongoDB), with experience in designing scalable database architectures.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Recruitment Trends 2025 (UK): What Job Seekers Must Know About Today’s Hiring Process

Summary: UK AI hiring has shifted from titles & puzzle rounds to skills, portfolios, evals, safety, governance & measurable business impact. This guide explains what’s changed, what to expect in interviews, and how to prepare—especially for LLM application, MLOps/platform, data science, AI product & safety roles. Who this is for: AI/ML engineers, LLM engineers, data scientists, MLOps/platform engineers, AI product managers, applied researchers & safety/governance specialists targeting roles in the UK.

Why AI Careers in the UK Are Becoming More Multidisciplinary

Artificial intelligence is no longer a single-discipline pursuit. In the UK, employers increasingly want talent that can code and communicate, model and manage risk, experiment and empathise. That shift is reshaping job descriptions, training pathways & career progression. AI is touching regulated sectors, sensitive user journeys & public services — so the work now sits at the crossroads of computer science, law, ethics, psychology, linguistics & design. This isn’t a buzzword-driven change. It’s happening because real systems are deployed in the wild where people have rights, needs, habits & constraints. As models move from lab demos to products that diagnose, advise, detect fraud, personalise education or generate media, teams must align performance with accountability, safety & usability. The UK’s maturing AI ecosystem — from startups to FTSE 100s, consultancies, the public sector & universities — is responding by hiring multidisciplinary teams who can anticipate social impact as confidently as they ship features. Below, we unpack the forces behind this change, spotlight five disciplines now fused with AI roles, show what it means for UK job-seekers & employers, and map practical steps to future-proof your CV.

AI Team Structures Explained: Who Does What in a Modern AI Department

Artificial Intelligence (AI) and Machine Learning (ML) are no longer confined to research labs and tech giants. In the UK, organisations from healthcare and finance to retail and logistics are adopting AI to solve problems, automate processes, and create new products. With this growth comes the need for well-structured teams. But what does an AI department actually look like? Who does what? And how do all the moving parts come together to deliver business value? In this guide, we’ll explain modern AI team structures, break down the responsibilities of each role, explore how teams differ in startups versus enterprises, and highlight what UK employers are looking for. Whether you’re an applicant or an employer, this article will help you understand the anatomy of a successful AI department.