Environmental Risk Modeller

Cambridge
2 months ago
Applications closed

Related Jobs

View all jobs

Data Scientist

Geospatial Data Engineer

Data Scientist (Climate & Geospatial)

Lecturer in Physical Geography and Spatial Data Science (Education) - Strand, London, WC2R 2LS

Research Fellow in Spatial Data Science (Public Health)

Marie Curie Doctoral Fellow - Data science to deliver Nature-based solutions

Environmental Risk Modeller Location: Cambridge, Cambridgeshire (Hybrid)
Salary: 60-85k
Job Type: Full-time, Permanent
About the Role We are seeking a quantitative modeller to support the development of climate physical risk and nature modelling efforts for an innovative and fast-growing organisation. The successful candidate will be responsible for quantifying the impacts and dependencies of businesses on climate and nature, working alongside a talented team of modellers, economists, data scientists, and software engineers.
This is an exciting opportunity for an ambitious individual looking to work on cutting-edge analytics with some of the world’s largest and most forward-thinking corporations.

Key Responsibilities
Develop models using novel techniques to assess risks from climate change and nature, translating complex scientific concepts into quantified financial impacts for businesses.
Write Python code to integrate models into the company’s analytics platform.
Build and analyse geospatial data layers to support risk modelling.
Deliver actionable insights and analytics relevant to corporate decision-making.
Act as a subject matter expert on nature and climate-related risks and opportunities.
Collaborate with internal teams and clients, requiring a minimum of three days per week in the Cambridge office. Essential Skills & Experience
A Bachelor’s degree in natural sciences, physics, engineering, or a related field.
Experience delivering environmental or sustainability-related projects to corporate clients.
Strong knowledge of mathematical modelling, including statistics, geospatial analysis, and probability, with practical applications to real-world problems.
Proficiency in Python (preferred), R, or MATLAB for scientific programming.
Experience working with large geospatial and environmental datasets (e.g., CMIP6, SSPs, or nature data layers).
Strong research skills with the ability to translate data into actionable models and insights.
Excellent communication skills, with the ability to present complex scientific concepts to non-technical audiences.
Ability to work effectively in a fast-paced environment, managing multiple projects while collaborating with a diverse team of scientists and engineers. Desirable Skills
Postdoctoral research experience in a relevant field.
Experience in model development (e.g., natural catastrophe modelling, risk quantification).
Cross-disciplinary expertise in areas such as natural sciences, agronomy, or environmental economics.
Experience quantifying the economic impact of climate and nature-related risks to inform business or government decision-making. Why Join?
Be part of a rapidly growing organisation at the forefront of climate and environmental risk modelling.
Work on high-impact projects with leading global corporations.
Collaborate with a highly skilled team of scientists, engineers, and industry experts.
Competitive salary and opportunities for career progression

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

In today's competitive AI job market, nailing a technical interview can be the difference between landing your dream role and getting lost in the crowd. Whether you're looking to break into machine learning, deep learning, NLP (Natural Language Processing), or data science, your problem-solving skills and system design expertise are certain to be put to the test. AI‑related job interviews typically involve a range of coding challenges, algorithmic puzzles, and system design questions. You’ll often be asked to delve into the principles of machine learning pipelines, discuss how to optimise large-scale systems, and demonstrate your coding proficiency in languages like Python, C++, or Java. Adequate preparation not only boosts your confidence but also reduces the likelihood of fumbling through unfamiliar territory. If you’re actively seeking positions at major tech companies or innovative AI start-ups, then check out www.artificialintelligencejobs.co.uk for some of the latest vacancies in the UK. Meanwhile, this blog post will guide you through 30 real coding & system-design questions you’re likely to encounter during your AI job interview. This list is designed to help you practise, anticipate typical question patterns, and stay ahead of the competition. By reading through each question and thinking about the possible approaches, you’ll sharpen your problem-solving skills, time management, and critical thinking. Each question covers fundamental concepts that employers regularly test, ensuring you’re well-equipped for success. Let’s dive right in.

Negotiating Your AI Job Offer: Equity, Bonuses & Perks Explained

Artificial intelligence (AI) has proven itself to be one of the most transformative forces in today’s business world. From smart chatbots in customer service to predictive analytics in finance, AI technologies are reshaping how organisations operate and innovate. As the demand for AI professionals grows, so does the complexity of compensation packages. If you’re a mid‑senior AI professional, you’ve likely seen job offers that include far more than just a base salary—think equity, bonuses, and a range of perks designed to entice you into joining or staying with a company. For many, the focus remains squarely on salary. While that’s understandable—after all, your monthly take‑home pay is what covers day-to-day expenses—limiting your negotiations to salary alone can leave considerable value on the table. From stock options in ambitious startups to sign‑on bonuses that ‘buy you out’ of your current contract, modern AI job offers often include elements that can significantly boost your long-term wealth and job satisfaction. This article aims to shed light on the full scope of AI compensation—specifically focusing on how equity, bonuses, and perks can enhance (or sometimes detract from) the overall value of your package. We’ll delve into how these elements work in practice, what to watch out for, and how to navigate the negotiation process effectively. Our goal is to provide mid‑senior AI professionals with the insights and tools to land a holistic compensation deal that accurately reflects their technical expertise, leadership potential, and strategic importance in this fast-moving field. Whether you’re eyeing a leadership role in machine learning at an established tech giant, or you’re considering a pioneering position at a disruptive AI startup, the knowledge in this guide will help you weigh the merits of base salary alongside the potential riches—and risks—of equity, bonuses, and other benefits. By the end, you’ll have a clearer sense of how to align your compensation with both your immediate lifestyle needs and long-term career aspirations.

AI Jobs in the Public Sector: MOD, NHS & Gov Digital Service Opportunities

Artificial intelligence (AI) has rapidly evolved from a niche field of computer science into a transformative force reshaping industries across the globe. From healthcare to finance and from education to defence, AI-driven tools and techniques are revolutionising how we approach problems, improve efficiency, and make data-driven decisions. Nowhere is this transformation more apparent than in the United Kingdom’s public sector. Key government entities, including the Ministry of Defence (MOD), the National Health Service (NHS), and the Government Digital Service (GDS), are increasingly incorporating AI into their operations. Consequently, AI jobs within these bodies are growing both in number and strategic importance. In this comprehensive blog post, we will explore the landscape of AI jobs across the UK public sector, with a close look at the MOD, the NHS, and the Government Digital Service. We will delve into the reasons these organisations are investing heavily in AI, the types of roles available, the essential skills and qualifications required, as well as the salary ranges one might expect. Whether you are a new graduate keen to make a meaningful impact through your technical skills or a seasoned professional looking for your next career move, the public sector offers a wealth of opportunities in AI. By the end of this article, you will have a clearer understanding of why AI is so crucial to the public sector’s success, which roles are in demand, and how you can tailor your application to stand out in a competitive and rewarding job market.