Enterprise Architect Lead, Data Science & AI

Cramond Bridge
1 year ago
Applications closed

Related Jobs

View all jobs

Enterprise Architect - Data Science, AI and ML

Senior Lead Analyst - Data Science_ AI/ML & Gen AI - UK

Senior Lead Analyst - Data Science_ AI/ML & Gen AI

Associate Director, Data Science/Gen AI Lead - ER&I

Associate Director, Data Science/Gen AI Lead - ER&I

Associate Director, Data Science/Gen AI Lead - ER&I

Join us as an Enterprise Architect Lead, Data Science & AI

Join a team that is shaping the future of the bank’s data science and AI architecture and governance and help us unlock the full potential of our data

You'll be defining the intentional architecture for your assigned scope in order to ensure that the current architecture being delivered by engineers best supports the enterprise and its long term strategy

With valuable exposure, you’ll be building and leveraging relationships with colleagues across the bank to ensure commercially focused decisions and to create long term value for the bank

What you'll do

We’re embarking on a new and exciting phase of the bank’s transformation agenda, data science and AI architecture play a crucial role in achieving our mission to simplify, reduce risk and enable customer engagement and personalisation. Supporting the development of architectures and roadmaps of innovative data solutions, leveraging data science and AI, is critical to driving simplification, improving data efficiency, and ensuring data risk stays within tolerance.

In this key role, you’ll be defining and communicating the current, resultant and target state architecture for your enterprise solutions using data science & AI. You’ll also be making sure that the architecture links to, and is informed by, our overall strategy and architecture, and produces the architecture outcomes.

We’ll look to you to influence the development of business strategies at an organisational level, identifying transformational opportunities for our businesses and technology areas associated with both new and existing technologies. You’ll manage and mentor a team of specialist and senior data architects dedicated to supporting architectures for solutions using data science and AI fostering a collaborative, high performance culture that encourages innovation.

As well as this, you’ll:

Translate architecture roadmaps into packages of work that allow frequent incremental delivery of value to be included in product backlog

Define, create and maintain architecture models, roadmaps, standards and outcomes, using architecture strategies to ensure alignment to adjacent and higher level model

Work closely with business owners, portfolio managers, product managers and release managers to define the target intentional architecture

Lead complex and technically challenging architectural transformations, coordinating design and platform teams across domains

Stay abreast of the commercial and emerging data technology offerings that may influence current and target Data Science and AI architectures and their governance

Seek out and utilise continuous feedback, fostering adaptive design and engineering practices to drive the collaboration of programmes and teams around a common technical vision

The skills you'll need

We’re looking for someone with a background in defining business and application architectures and roadmaps for data science and AI based solutions. You’ll bring expert knowledge of enterprise data architecture, solution data architecture, architecture for data science and AI with knowledge of industry architecture frameworks such as TOGAF or ArchiMate. 

In addition, you’ll be a thought leader of architecture for data science and AI solutions and enterprise design in the bank influencing business and technology teams. You’ll have excellent communication skills with the ability to clearly communicate complex technical concepts to colleagues up to senior leadership level, along with a good understanding of Agile methodologies with experience of working in an Agile team.

You’ll also have:

Experience of developing, syndicating and communicating architectures, designs and proposals for action

Experience of working with business solution vendors, technology vendors and products within the market

Experience as an enterprise architect with focus on architecture advisory along with experience in AI or ML and Data Science solutions and patterns

Experience with developing, data exploration, visualisation and statistical analysis technologies

Experience with developing, data exploration, visualisation and statistical analysis technologies

An understanding of neural networking, deep learning and LLM architectures

Knowledge of Data Science lifecycle, MLOps, model management and automation

Knowledge of data, architecture frameworks such as DAMA and DCAM as well as data related regulations such as GDPR, CCPA,PCI DSS and BCBS 239

Architecture knowledge of Tableau, AWS data stack, SageMaker, Python, EMR or Spark, Kafka and Snowflake

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.

How to Write an AI Job Ad That Attracts the Right People

Artificial intelligence is now embedded across almost every sector of the UK economy. From fintech and healthcare to retail, defence and climate tech, organisations are competing for AI talent at an unprecedented pace. Yet despite the volume of AI job adverts online, many employers struggle to attract the right candidates. Roles are flooded with unsuitable applications, while highly capable AI professionals scroll past adverts that feel vague, inflated or disconnected from reality. In most cases, the issue isn’t a shortage of AI talent — it’s the quality of the job advert. Writing an effective AI job ad requires more care than traditional tech hiring. AI professionals are analytical, sceptical of hype and highly selective about where they apply. A poorly written advert doesn’t just fail to convert — it actively damages your credibility. This guide explains how to write an AI job ad that attracts the right people, filters out mismatches and positions your organisation as a serious employer in the AI space.