Engineering Manager

Belfast
10 months ago
Applications closed

Related Jobs

View all jobs

Engineering Manager, MLOps, Marketplace, Ecommerce, | 35 Million Users | UK Remote OR London, H[...]

Engineering Manager, Machine Learning, Marketplace, Ecommerce, | 35 Million Users | UK Remote O[...]

Engineering Manager, MLOps, Marketplace, Ecommerce, | 35 Million Users | UK Remote OR London, H[...]

Engineering Manager, Machine Learning, Marketplace, Ecommerce, | 35 Million Users | UK Remote O[...]

Engineering Manager, Machine Learning, Marketplace, Ecommerce, | 35 Million Users | UK Remote O[...]

Engineering Manager, Machine Learning, Marketplace, Ecommerce, | 35 Million Users | UK Remote O[...]

Engineering Manager

Do you want to join a high-growth, dynamic tech business that is impacting real-world issues with its innovative products?

The company

This company are primarily data driven with domain expertise delivering insights to networks and assets using analytics, presentation, machine learning and AI that is SAAS and cloud based.

The Role:

Working primarily within the engineering organisation, across all delivery teams, the focus of this role is to take on ownership and responsibility for planning, delivery and execution of the technical delivery function. This will require a detailed understanding of the products, features, interactions, utilisation, configurations, customer deployments, services, architecture and roadmap determinations. In addition to execution, it will involve planning for new deployments and the introduction of new product services.

Key Responsibilities:

  • Lead and mentor the Technical delivery teams.

  • Assess delivery capabilities based on engineering delivery needs.

  • Create and execute plans for delivery based on capacity.

  • Communicate delivery and capability status.

  • Assess and measure productivity and utilisation.

  • Assess and feedback on individual performance reviews for reports.

  • Understand the capabilities and services of the product across multiple customers.

  • Work with customers, engineering and business teams to help determine prioritisation for planning and execution of delivery.

  • Understand the deployment, sites and sensors under management across customers.

  • Appreciate the organisation structure and help identify needs/changes for delivery.

  • Engage with Senior Management, HR and direct reports to develop and agree resourcing options and requirements.

  • Support architectural planning and s/w engineering delivery requirements.

  • Contribute to and produce estimations for timeframes and costs in delivery.

  • Advocate for additional tooling or processes with a view to optimisation and improvement.

    Essential Criteria:

  • Degree level education in a relevant discipline or equivalent experience.

  • 10+ years of experience in a delivery execution role.

  • 2+ years in an Engineering Management role.

  • Experienced in at least one of the main cloud technologies – AWS, Azure, RedHat, GCP, IBM Cloud.

  • Clarity in communication.

  • Can-do, problem-solving mindset.

  • Curious and willing to onward develop and learn in ML/AI area.

    Benefits:

    Private medical and dental insurance.

    24 days annual leave.

    Additional day off for birthday.

    Enhanced maternity / paternity package.

    Hybrid working

    Free parking at office.

    Share Options

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.

How to Write an AI Job Ad That Attracts the Right People

Artificial intelligence is now embedded across almost every sector of the UK economy. From fintech and healthcare to retail, defence and climate tech, organisations are competing for AI talent at an unprecedented pace. Yet despite the volume of AI job adverts online, many employers struggle to attract the right candidates. Roles are flooded with unsuitable applications, while highly capable AI professionals scroll past adverts that feel vague, inflated or disconnected from reality. In most cases, the issue isn’t a shortage of AI talent — it’s the quality of the job advert. Writing an effective AI job ad requires more care than traditional tech hiring. AI professionals are analytical, sceptical of hype and highly selective about where they apply. A poorly written advert doesn’t just fail to convert — it actively damages your credibility. This guide explains how to write an AI job ad that attracts the right people, filters out mismatches and positions your organisation as a serious employer in the AI space.

Maths for AI Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are a software engineer, data scientist or analyst looking to move into AI or you are a UK undergraduate or postgraduate in computer science, maths, engineering or a related subject applying for AI roles, the maths can feel like the biggest barrier. Job descriptions say “strong maths” or “solid fundamentals” but rarely spell out what that means day to day. The good news is you do not need a full maths degree worth of theory to start applying. For most UK roles like Machine Learning Engineer, AI Engineer, Data Scientist, Applied Scientist, NLP Engineer or Computer Vision Engineer, the maths you actually use again & again is concentrated in a handful of topics: Linear algebra essentials Probability & statistics for uncertainty & evaluation Calculus essentials for gradients & backprop Optimisation basics for training & tuning A small amount of discrete maths for practical reasoning This guide turns vague requirements into a clear checklist, a 6-week learning plan & portfolio projects that prove you can translate maths into working code.