National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Engineer Machine Learning

SAMSUNG
Cambridge
1 year ago
Applications closed

Related Jobs

View all jobs

Data Engineer (Machine Learning) (F/M/D)

Data Engineer / Machine Learning Engineer

Software Engineer - Machine Learning (Remote)

Research Engineer (Machine Learning)

Data Engineer, Machine Learning & Data

Data Engineer - Machine Learning Experience

Position Summary

The Distributed AI group in SAIC Cambridge is looking for a Machine Learning Engineer to join the team and work directly with research scientists and ML engineers of diverse skill sets, supporting research efforts in the areas of embedded/distributed ML, communications and robotics. The person will be responsible for contributing to internal research tools, helping implementing/extending research ideas and/or realising research prototypes into demos and minimum viable products (MVPs).

Role and Responsibilities

As part of the group, you will contribute to technical and system aspects of deploying embedded/distributed/mobile ML systems for cutting-edge research and real-world applications in vision and language, with the possibility of partaking in publishing academic papers and patents. Moreover, there is the potential for cross-group collaborations and the ability to learn and grow inside the team. 


To this direction, they are searching for a candidate with deep knowledge in system design and architecture. The candidate should have exposure to different layers in the system stack and spherical knowledge about how ML systems operate. Lastly, the candidate should have an analytical and rigorous approach and make design choices based on quantitative data. In summary, we are searching for a “jack of all trades” in MLSys.

Skills and Qualifications

MS or PhD in CS/EE or equivalent experience in the industry, with key skills:

Experience with ML frameworks (PyTorch, TensorFlow, JAX) and efficient ML (incl. quantisation, pruning, sparsification, etc.)

Experience with deployment on embedded and mobile devices (ML inference and/or training)

Experience with distributed and multi-GPU training at scale

Fluency in Python, C/C++ and GNU Linux

Experience in working as member of a team

Any of the following skills will also be positively considered:

Experience in real-world (distributed) system deployment and maintenance

Hands-on experience and understanding of networking stack and communication protocols (e.g. distributed inference/training over PAN/LAN/WLAN, software defined radio, etc.)

Experience with practical aspects of deploying computer vision in real-world settings such as AR/VR, smart homes and robotics (e.g. camera calibration, RGB-D and/or motion-tracking sensors, multi-camera ecosystems, etc.)

Experience with large-scale NLP research, including discriminative or generative tasks. This includes all steps of the pipeline, from data collection and preprocessing to large model adaptation, fine-tuning and optimisation.

Android Operating System and Android app development

Robot Operating System (ROS)

Contract Type: Permanent

Job Location: Cambridge, UK

Hybrid Working:Standard working week will be 3 days onsite and 2 days working from home if preferred

Employee Benefits:Competitive Salary, Annual Performance Bonus up to10%, Pension Scheme with company contribution up to 8.5%, Income Protection, Stocks & Shares ISA, Life Assurance, 25 days holiday (increasing to 30 with length of service). We also have a wide range of Flexible Benefits to choose from with Samsung providing an allowance of £600 per year to spend on them.

*

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Jobs Skills Radar 2026: Emerging Frameworks, Languages & Tools to Learn Now

As the UK’s AI sector accelerates towards a £1 trillion tech economy, the job landscape is rapidly evolving. Whether you’re an aspiring AI engineer, a machine learning specialist, or a data-driven software developer, staying ahead of the curve means more than just brushing up on Python. You’ll need to master a new generation of frameworks, languages, and tools shaping the future of artificial intelligence. Welcome to the AI Jobs Skills Radar 2026—your definitive guide to the emerging AI tech stack that employers will be looking for in the next 12–24 months. Updated annually for accuracy and relevance, this guide breaks down the top tools, frameworks, platforms, and programming languages powering the UK’s most in-demand AI careers.

How to Find Hidden AI Jobs in the UK Using Professional Bodies like BCS, IET & the Turing Society

When it comes to job hunting in artificial intelligence (AI), most candidates head straight to traditional job boards, LinkedIn, or recruitment agencies. But what if there was a better way to find roles that aren’t advertised publicly? What if you could access hidden job leads, gain inside knowledge, or get referred by people already in the field? That’s where professional bodies and specialist AI communities come in. In this article, we’ll explore how UK-based organisations like BCS (The Chartered Institute for IT), IET (The Institution of Engineering and Technology), and the Turing Society can help you uncover AI job opportunities you won’t find elsewhere. We'll show you how to strategically use their directories, special-interest groups (SIGs), and CPD (Continuing Professional Development) events to elevate your career and expand your AI job search in ways most job seekers overlook.

How to Get a Better AI Job After a Lay-Off or Redundancy

Being made redundant or laid off can feel like the rug has been pulled from under you. Whether part of a wider company restructuring, budget cuts, or market shifts in tech, many skilled professionals in the AI industry have recently found themselves unexpectedly jobless. But while redundancy brings immediate financial and emotional stress, it can also be a powerful catalyst for career growth. In the fast-evolving field of artificial intelligence, where new roles and specialisms emerge constantly, bouncing back stronger is not only possible—it’s likely. In this guide, we’ll walk you through a step-by-step action plan for turning redundancy into your next big opportunity. From managing the shock to targeting better AI jobs, updating your CV, and approaching recruiters the smart way, we’ll help you move from setback to comeback.