Director of Engineering

Signify Technology
London
9 months ago
Applications closed

Related Jobs

View all jobs

Data Scientist - 6 month FTC

Ralph Lauren Data Science Manager

Senior Data Scientist

Senior Director, Data Science and Analytics

Data Science Graduate

Data Science Graduate

Job Description

Role:Director of Engineering

Location:London, England

Contract:Permanent


Signify have partnered with a long standing client who are looking for a Director of Engineering who comes from a strong technical background. Expertise with ML and a strong interest in AI is a massive plus.


You will overseeing a few team and only have a handful of direct reports. They are looking for a DoE who has built and lead high performing teams. Who is not afraid in getting involved with hands on occasionally.


Role:

  • Lead, mentor, and scale multiple Machine Learning engineering teams, empowering both individual contributors and managers.
  • Drive the technical vision and strategy for ML systems, ensuring best practices in architecture, scalability, and performance.
  • Collaborate with stakeholders across product, data, and executive teams to align ML capabilities with business goals.
  • Roll up your sleeves when needed—help guide complex technical decisions and review key ML and engineering work.
  • Build and foster a high-performing, collaborative culture, where innovation and excellence thrive.
  • Scale teams and processes to support hyper-growth and evolving ML capabilities.



Reequipments:

  • Hands-on experien...

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.

How to Write an AI Job Ad That Attracts the Right People

Artificial intelligence is now embedded across almost every sector of the UK economy. From fintech and healthcare to retail, defence and climate tech, organisations are competing for AI talent at an unprecedented pace. Yet despite the volume of AI job adverts online, many employers struggle to attract the right candidates. Roles are flooded with unsuitable applications, while highly capable AI professionals scroll past adverts that feel vague, inflated or disconnected from reality. In most cases, the issue isn’t a shortage of AI talent — it’s the quality of the job advert. Writing an effective AI job ad requires more care than traditional tech hiring. AI professionals are analytical, sceptical of hype and highly selective about where they apply. A poorly written advert doesn’t just fail to convert — it actively damages your credibility. This guide explains how to write an AI job ad that attracts the right people, filters out mismatches and positions your organisation as a serious employer in the AI space.

Maths for AI Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are a software engineer, data scientist or analyst looking to move into AI or you are a UK undergraduate or postgraduate in computer science, maths, engineering or a related subject applying for AI roles, the maths can feel like the biggest barrier. Job descriptions say “strong maths” or “solid fundamentals” but rarely spell out what that means day to day. The good news is you do not need a full maths degree worth of theory to start applying. For most UK roles like Machine Learning Engineer, AI Engineer, Data Scientist, Applied Scientist, NLP Engineer or Computer Vision Engineer, the maths you actually use again & again is concentrated in a handful of topics: Linear algebra essentials Probability & statistics for uncertainty & evaluation Calculus essentials for gradients & backprop Optimisation basics for training & tuning A small amount of discrete maths for practical reasoning This guide turns vague requirements into a clear checklist, a 6-week learning plan & portfolio projects that prove you can translate maths into working code.