DevSecOps AWS Cloud Engineer

A1X
Newcastle upon Tyne
1 year ago
Applications closed

Related Jobs

View all jobs

Senior Data Scientist

Senior Data Scientist, Sports

Senior Data Scientist, Sports

Manufacturing Data Scientist

Manufacturing Data Scientist

Senior Machine Learning Engineer (MLOps)

Location: Remote (Europe)

Job Type: Full-time, 12-month contract with an initial 3-month probationary period (possibly leading to a permanent position)

Compensation: Highly competitive, based on experience


Designing, deploying and refining scalable, performant cloud infrastructure as code.

Shifting left and right to bake in world-class security, testing and observability from day one.

Seeing opportunity in cryptocurrency and financial disruption.

Taking ownership and collaborating for greatness.

If these match your passion, excitement and skills, let’s talk!


We are a small, proprietary trading firm that leverages cutting-edge technology to excel in cryptocurrency derivatives markets, currently focused on the first iteration of a real-time, cloud-based quantitative analysis pipeline that produces price & volatility forecasts and optimises our quoting strategy for our market-making activities.


As a DevSecOps AWS Cloud Engineer, you’ll take the lead in designing, implementing, and managing the infrastructure that powers our trading. This requires proven excellence in combining, configuring, automating and securing the AWS resources that underlie resilient, secure and performant applications, the pipelines that build, test and deploy them, and the auxiliary systems that support them.


This role’s core responsibility is empowering our team with infrastructure, standards and processes that streamline and accelerate the Software Development Life Cycle (SDLC), enhance collaboration, whilst securing our data and systems.


In this role, you will work closely with Engineering and QA teams to ensure the reliability, security, scalability and automation of core systems, and the development of auxiliary systems such as health monitoring dashboards, centralized logging and metrics systems, and notifications.


Key Responsibilities

As a DevSecOps AWS Cloud Engineer, your key responsibilities include to:

  • Collaborate with Engineering and QA to design and automate secure, scalable, performant infrastructure and environments that enables running and testing low-latency, reliable trading applications
  • Maintain and standardise core DevOps systems, such as version control, CI/CD, configuration management, IaC and rollback mechanisms to streamline infrastructure provisioning, setup and SDLC
  • Automate our security posture at every stage of SDLC with AST tools, security policies, monitoring, configuration and compliance to meet industry standards
  • Build dashboards, automatic notifications, and other health and security monitoring systems to ensure rapid response and resolution of critical, performance and security issues that compromise our trading
  • Develop security and infrastructure failure incident response playbooks, and lead remediation after incidents
  • Take proactive ownership of cloud infrastructure maintenance and issues, from root cause analysis to resolution
  • Drive the adoption of best practices for secure, consistent and efficient development across the organization
  • Work across teams to align and deliver automated infrastructure that meets business needs whilst improving quality of both our output and the team’s quality of life
  • Document and ensure clear communication of architecture, processes, and best practices to the team
  • Establish and monitor appropriate metrics and KPIs to facilitate data-driven feedback and improvement


Key Qualifications

  • BSc or MSc in Computer Science, Information Security, or a related STEM field
  • 3+ years in DevOps/DevSecOps, with 2+ years working in hybrid or cloud-native AWS environments
  • Proven AWS expertise, with at least one of the following (or equivalent): AWS Certified DevOps Engineer – Professional, AWS Certified Solutions Architect – Professional
  • Proven expertise and experience in automating security in SDLC and following recognised standards, guidelines and references (NIST, OWASP, CWEs, CVEs). Putting the Sec in DevSecOps.
  • Deep conceptual knowledge of CI/CD pipelines, observability tools, IaC, version control and SDLC automation in general
  • Strong understanding of Linux, especially AL2023, and Docker containerization
  • Extensive scripting experience (Shell, Python etc.)


Preferred Skills

  • Additional AWS certifications, such as: AWS Certified Security – Specialty, AWS Certified Advanced Networking – Specialty, AWS Certified Database – Specialty, AWS Certified Machine Learning – Specialty (for future projects)
  • Experience with AWS PrivateLink, DirectConnect, VPC Peering and Global Accelerator
  • Experience implementing Zero-Trust Network Models / Secure Access Service Edge (SASE) systems
  • Experience using Vector for observability pipelines
  • Windows Server administration skills
  • Proficiency with databases and messaging systems
  • Knowledge of financial systems and the collection and processing of time-series data
  • NodeJS skills to support with a ElasticBeanstalk project in maintenance


Why Join Us

  • Creatively apply and deepen your expertise at the cutting edge of the rapidly-emerging field of cryptocurrency.
  • Position yourself to contribute to innovative combinations of quantitative finance, ML, cloud-computing and trading strategy tailored to cryptocurrency trading.
  • Receive highly competitive pay, including bonuses, and the opportunity to join us permanently.
  • Be a fundamental force in shaping the infrastructure and systems of a growing trading firm.
  • Enjoy a flexible, collaborative and empowering fully remote work environment.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.