DevOps Engineer, IgniteTech (Remote) - $60,000/year USD

Crossover
Leicester
1 year ago
Applications closed

Related Jobs

View all jobs

Azure DevOps Engineer — Cloud, Kubernetes & MLOps

IoT DevOps Engineer (Azure & MLOps)

Senior DataOps Engineer - Observability & Cloud Reliability

Hybrid Senior DataOps Engineer — Data Platform Reliability

MLOps Engineer: Build Scalable ML Pipelines

Machine Learning Engineer

It's no secret that traditional site reliability teams struggle to keep pace with manual monitoring, reactive troubleshooting, and labor-intensive deployments. The rise of AI presents a solution, but many companies fail to fully leverage its potential, resulting in systems that underperform and bottlenecks that stifle innovation. Data shows that 73% of companies struggle with deployment delays and operational downtime, primarily due to outdated processes and lack of AI-driven automation.

At IgniteTech, we are tackling these issues head-on by building AI-first cloud solutions that are designed to anticipate and prevent problems before they arise. We focus on integrating AI and machine learning into every facet of cloud infrastructure management, from automated monitoring systems to intelligent CI/CD pipelines. This approach creates environments that not only self-heal but also continuously evolve, reducing downtime, improving performance, and pushing the boundaries of what cloud services can do.

This isn’t your typical site reliability role, where you'd be reacting to problems and manually intervening when things go wrong. Here, you’ll lead the charge in building AI-enhanced monitoring systems that detect and resolve 95% of issues before they ever reach end users. You’ll also architect and manage AI-automated CI/CD pipelines that reduce deployment times by 30% while slashing manual interventions. The ideal candidate thrives in an AI-driven environment, is excited by the prospect of automation-first solutions, and enjoys pushing the envelope of cloud infrastructure design.

In this role, you’ll join a global team of innovators who are redefining cloud infrastructure. Your work will play a key role in our mission to deliver next-gen, AI-driven operational excellence. We’re seeking someone who is passionate about AI and ready to make a lasting impact on the future of cloud services. If that’s you, we encourage you to apply and be part of something revolutionary.


What you will be doing

  • Implementing AI-based monitoring services to automatically detect, predict, and resolve issues before they impact operations
  • Managing CI/CD pipelines with AI-driven automation to enhance deployment efficiency and reduce manual intervention


What you will NOT be doing

  • Focusing solely on manual monitoring, troubleshooting, and maintenance of systems; your goal will be to get AI to do these things for you


Key Responsibilities

  • Achieve seamless scalability and optimize performance for AI-powered cloud services, ensuring 99.99% uptime while delivering AI-enhanced software upgrades and customizations that meet clients' evolving needs


Candidate Requirements

  • 3+ years of DevOps experience, including automation of CI/CD pipelines and infrastructure management
  • 2+ years of experience with Amazon Web Services (AWS) or Google Cloud Platform (GCP)
  • Proficiency in AI and machine learning tools used for monitoring, automation, and predictive analytics (or strong willingness to learn and adapt to AI-driven technologies)
  • Strong programming and scripting skills, with experience in automating tasks and building AI-driven processes


Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.