Data Scientist/Machine Learning Engineer - RNA Design

Glasgow
9 months ago
Applications closed

Related Jobs

View all jobs

Data Scientist

Data Scientist, Machine Learning Engineer, Data Analyst, Data Engineer, AI Engineer, Business Intelligence Analyst, Data Architect, Analytics Engineer, Research Data Scientist, Statistician, Quantitative Analyst, ML Ops Engineer, Applied Scientist, Insigh

ML Engineer / Data Scientist

Data Scientist - User Fraud

Data Scientist (Full Stack)

Data Scientist II - QuantumBlack, AI by McKinsey

About this job

SRG are seeking a highly motivated and skilled data scientist to join our client and to focus on leveraging their proprietary platform to develop novel gene control systems for the cell and gene therapy space. As one of the first hires in this growing company, you will have the unique opportunity to help expand and scale their technology platform and help shape the future of gene therapies.

Our client is a venture-backed biotechnology company that designs novel control mechanisms for the cell and gene therapy market using an innovative AI platform and synthetic biology expertise. The platform enables the design, building and screening of large & complex libraries of RNA-based control systems, to allow the precise control of cell and gene therapies in response to a diverse range of molecules.

Key Responsibilities

Develop and refine AI/ML methods for RNA-based control system development.
Preparation, processing, cleaning, and annotation of datasets tailored for AI development. Manage the curation of these datasets to support various company projects.
Working within a multidisciplinary team, execute data analysis to a high standard and on schedule, to provide accurate data for seamless transition to subsequent project stages, and work closely with team members to inform the design of subsequent experiments.
Design, test and implement algorithms for structural design space exploration.
Demonstrate strong teamwork and a focus on achieving shared goals with a commitment to high-quality outcomes.

Skills

Essential

Proven track record in the successful development and deployment of AI/ML-based tools.
Strong command over Python and major ML frameworks such as Keras, PyTorch, TensorFlow, or Scikit-Learn.
Extensive experience in building and implementing predictive models to design biological sequences and/or analyse biological sequence data (DNA, RNA or protein).
Strong ability to communicate complex technical concepts effectively and collaborate closely with both experimental biologists and computational scientists.
Exceptional analytical skills with a methodical approach to problem-solving.

Desirable

Familiarity with handling and analysing Next-Generation Sequencing (NGS) data.
Skilled in using cloud platforms for deploying and managing ML applications.
Advanced ML Deployment: Experience in designing and rolling out large-scale machine learning algorithms.

Qualifications

PhD/MSc (or equivalent professional experience) in data science/AI, computer science, bioinformatics or other related field.Carbon60, Lorien & SRG - The Impellam Group STEM Portfolio are acting as an Employment Business in relation to this vacancy

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.