Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Scientist or AI/ML Engineer

Vallum Associates
London
2 days ago
Create job alert

You have:

· Advanced Python proficiency, especially in scalable, clean code architecture and microservices (e.g., FastAPI, Flask, asyncio)

· Solid understanding of API integration patterns and inter-servic communication (e.g. REST, Kafka)

· Experience with authentication and authorization mechanisms (e.g. OAuth2, JWT, Azure AD)

· At least two ML/AI solutions delivered to production, ideally involving document understanding, NLP or search/retrieval systems

· Practical knowledge and hands-on experience with: RAG architectures, LLMs (e.g., OpenAI, Antropic), Vector databases (e.g., FAISS, Azure AI Search), Embeddings (e.g., OpenAI)

· Strong grasp of NLP techniques: named entity recognition (NER), document classification, chunking, summarization, question answering.

· Ability to evaluate trade-offs and select appropriate ML/AI techniques for a given problem.

· Experience with PoC development and iterating quickly based on results.

· Familiarity with LangChain, LlamaIndex, or similar agentic frameworks.

· Strong debugging, profiling, and optimization skills for AI applications.

Related Jobs

View all jobs

Data Scientist or AI/ML Engineer

Data science/AI/ML engineer

Senior Data Scientist (UK)

Staff Data Scientist (UK)

Principal Data Scientist

Executive Director / Principal Data Scientist

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Why AI Careers in the UK Are Becoming More Multidisciplinary

Artificial intelligence is no longer a single-discipline pursuit. In the UK, employers increasingly want talent that can code and communicate, model and manage risk, experiment and empathise. That shift is reshaping job descriptions, training pathways & career progression. AI is touching regulated sectors, sensitive user journeys & public services — so the work now sits at the crossroads of computer science, law, ethics, psychology, linguistics & design. This isn’t a buzzword-driven change. It’s happening because real systems are deployed in the wild where people have rights, needs, habits & constraints. As models move from lab demos to products that diagnose, advise, detect fraud, personalise education or generate media, teams must align performance with accountability, safety & usability. The UK’s maturing AI ecosystem — from startups to FTSE 100s, consultancies, the public sector & universities — is responding by hiring multidisciplinary teams who can anticipate social impact as confidently as they ship features. Below, we unpack the forces behind this change, spotlight five disciplines now fused with AI roles, show what it means for UK job-seekers & employers, and map practical steps to future-proof your CV.

AI Team Structures Explained: Who Does What in a Modern AI Department

Artificial Intelligence (AI) and Machine Learning (ML) are no longer confined to research labs and tech giants. In the UK, organisations from healthcare and finance to retail and logistics are adopting AI to solve problems, automate processes, and create new products. With this growth comes the need for well-structured teams. But what does an AI department actually look like? Who does what? And how do all the moving parts come together to deliver business value? In this guide, we’ll explain modern AI team structures, break down the responsibilities of each role, explore how teams differ in startups versus enterprises, and highlight what UK employers are looking for. Whether you’re an applicant or an employer, this article will help you understand the anatomy of a successful AI department.

Why the UK Could Be the World’s Next AI Jobs Hub

Artificial Intelligence (AI) has rapidly moved from research labs into boardrooms, classrooms, hospitals, and homes. It is already reshaping economies and transforming industries at a scale comparable to the industrial revolution or the rise of the internet. Around the world, countries are competing fiercely to lead in AI innovation and reap its economic, social, and strategic benefits. The United Kingdom is uniquely positioned in this race. With a rich heritage in computing, world-class universities, forward-thinking government policy, and a growing ecosystem of startups and enterprises, the UK has many of the elements needed to become the world’s next AI hub. Yet competition is intense, particularly from the United States and China. Success will depend on how effectively the UK can scale its strengths, close its gaps, and seize opportunities in the years ahead. This article explores why the UK could be the world’s next global hub for artificial intelligence, what challenges it must overcome, and what this means for businesses, researchers, and job seekers.