Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Scientist - NPL & Unsecured Portfolios

Anonymous
London
1 day ago
Create job alert

We are working with a growing consumer finance fintech platform, who are looking to build out their Data and Analytics department. The team, who have recently received backing from a global Investment firm are now building out a Data and Analytics team in London - with a focus on supporting their Unsecured NPL Portfolio Investment team.


This role is ideal for a technically strong, quantitatively minded professional with a background in statistics and data science, looking to apply their skills in financial services. While specific NPL experience is not required, a passion for large-scale data analysis and modern analytics frameworks is essential.


You will work in a neo-bank/fintech-style environment, using cutting-edge technology to analyze terabytes of data and support high-impact investment decisions.


Responsibilities:

  • Develop, implement, and validate statistical and machine learning models for analysing non-performing loan portfolios.
  • Collaborate with cross-functional teams—including credit, collections, and data engineering—to translate business objectives into robust analytical solutions.
  • Build software using modern technology to enable investing and asset management at scale.
  • Apply Bayesian modelling and probabilistic programming techniques to address uncertainty and improve prediction accuracy.
  • Analyse large-scale datasets to identify key drivers, trends, and early warning signals within NPL portfolios.
  • Clearly communicate model results, insights, and recommendations to stakeholders, including both technical and non-technical audiences.
  • Stay current with advances in statistical modelling, machine learning, and data science, continuously evaluating and integrating new techniques and tools.


Requirements:

  • University degree in a STEM field (e.g., Mathematics, Statistics, Computer Science, Engineering, Physics, Economics); advanced degree preferred.
  • Strong expertise in statistical modelling, Bayesian inference, and machine learning.
  • Proficient in Python (using libraries such as NumPy, pandas, scikit-learn, PyMC or Stan)
  • Experienced in SQL. Ability to write efficient and robust queries.
  • Demonstrated experience working with large and complex datasets.
  • Ability to communicate complex analytical concepts clearly and effectively to a range of audiences.
  • Experience with model governance, documentation, and deployment best practices.
  • Experience with cloud environments (e.g., AWS Sagemaker).
  • Experience with collaborative development tools (e.g., Git, JIRA) is a plus.
  • Prior experience in financial services, banking, or credit risk modelling is beneficial.
  • 5-8 years experience in a Data/Analytics role, ideally within a Financial Institution


Why This Role

  • Opportunity to build an analytics function from the ground up in a cutting-edge, entrepreneurial environment.
  • Work with massive datasets and modern tools at the forefront of fintech innovation.
  • High-impact role directly contributing to investment and portfolio decision-making.

Related Jobs

View all jobs

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist - Tax & Legal

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write an AI CV that Beats ATS (UK examples)

Writing an AI CV for the UK market is about clarity, credibility, and alignment. Recruiters spend seconds scanning the top third of your CV, while Applicant Tracking Systems (ATS) check for relevant skills & recent impact. Your goal is to make both happy without gimmicks: plain structure, sharp evidence, and links that prove you can ship to production. This guide shows you exactly how to do that. You’ll get a clean CV anatomy, a phrase bank for measurable bullets, GitHub & portfolio tips, and three copy-ready UK examples (junior, mid, research). Paste the structure, replace the details, and tailor to each job ad.

AI Recruitment Trends 2025 (UK): What Job Seekers Must Know About Today’s Hiring Process

Summary: UK AI hiring has shifted from titles & puzzle rounds to skills, portfolios, evals, safety, governance & measurable business impact. This guide explains what’s changed, what to expect in interviews, and how to prepare—especially for LLM application, MLOps/platform, data science, AI product & safety roles. Who this is for: AI/ML engineers, LLM engineers, data scientists, MLOps/platform engineers, AI product managers, applied researchers & safety/governance specialists targeting roles in the UK.

Why AI Careers in the UK Are Becoming More Multidisciplinary

Artificial intelligence is no longer a single-discipline pursuit. In the UK, employers increasingly want talent that can code and communicate, model and manage risk, experiment and empathise. That shift is reshaping job descriptions, training pathways & career progression. AI is touching regulated sectors, sensitive user journeys & public services — so the work now sits at the crossroads of computer science, law, ethics, psychology, linguistics & design. This isn’t a buzzword-driven change. It’s happening because real systems are deployed in the wild where people have rights, needs, habits & constraints. As models move from lab demos to products that diagnose, advise, detect fraud, personalise education or generate media, teams must align performance with accountability, safety & usability. The UK’s maturing AI ecosystem — from startups to FTSE 100s, consultancies, the public sector & universities — is responding by hiring multidisciplinary teams who can anticipate social impact as confidently as they ship features. Below, we unpack the forces behind this change, spotlight five disciplines now fused with AI roles, show what it means for UK job-seekers & employers, and map practical steps to future-proof your CV.