Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Scientist – NLP, LLMs, & Prompt Engineering

Careerwise
London
5 months ago
Applications closed

Related Jobs

View all jobs

NLP Data Scientist

NLP Data Scientist

Data Scientist

Data Scientist (GenAI)

Senior Data Scientist

Senior Data Scientist - Conversational & Agentic AI

Role: Data Scientist – GenAI, Python, NLP, LLMs, & Prompt Engineering Location: Remote Contract – 3-6 Months Rate - £450/Day Outside IR35 Job Overview: We are seeking a highly skilled and creative Data Scientist with deep expertise in Python programming , Natural Language Processing (NLP) , and Large Language Models (LLMs) . This role demands hands-on experience in prompt engineering , designing intelligent conversational flows, managing context windows, and interfacing with APIs such as OpenAI’s Chat Completions API . The ideal candidate should be capable of designing, evaluating, and optimizing AI systems that generate high-quality, context-aware responses. Key Responsibilities: Develop and deploy NLP solutions using libraries such as NLTK , SpaCy , and TextBlob . Engineer prompts for LLMs using zero-shot , few-shot , chain-of-thought , and meta-prompting techniques. Design and refine targeted prompts to drive intelligent behavior in AI chatbots. Write Python functions to interface with APIs, especially OpenAI’s Chat Completions API and similar LLM platforms. Manage token economy and conversational context for long, multi-turn dialogues. Architect sequential, step-by-step task flows for complex LLM workflows. Evaluate and analyze AI-generated responses to iteratively improve prompt quality and outcome accuracy. Collaborate with product, design, and engineering teams to deploy and monitor LLM-based features. Conduct experiments and fine-tune prompts to enhance response relevance, coherence, and factual correctness. Required Qualifications: Proven experience with Python and NLP libraries such as NLTK , SpaCy , TextBlob , or similar. Hands-on experience working with LLMs (e.g., OpenAI, Claude, Mistral, etc.) . Deep understanding of prompt engineering strategies and conversational AI workflows. Experience building and consuming RESTful APIs. Strong grasp of tokenization , embedding-based memory , and context management in LLMs. Ability to evaluate AI outputs for quality, relevance, and consistency. Familiarity with version control systems (e.g., Git) and agile development practices. Preferred Qualifications: Experience with LangChain , LlamaIndex , or other LLM orchestration tools. Background in linguistics , cognitive science , or human-computer interaction . Prior work in chatbot development , virtual assistants , or AI-driven user interfaces . Knowledge of RAG pipelines , vector databases , and semantic search .

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write an AI CV that Beats ATS (UK examples)

Writing an AI CV for the UK market is about clarity, credibility, and alignment. Recruiters spend seconds scanning the top third of your CV, while Applicant Tracking Systems (ATS) check for relevant skills & recent impact. Your goal is to make both happy without gimmicks: plain structure, sharp evidence, and links that prove you can ship to production. This guide shows you exactly how to do that. You’ll get a clean CV anatomy, a phrase bank for measurable bullets, GitHub & portfolio tips, and three copy-ready UK examples (junior, mid, research). Paste the structure, replace the details, and tailor to each job ad.

AI Recruitment Trends 2025 (UK): What Job Seekers Must Know About Today’s Hiring Process

Summary: UK AI hiring has shifted from titles & puzzle rounds to skills, portfolios, evals, safety, governance & measurable business impact. This guide explains what’s changed, what to expect in interviews, and how to prepare—especially for LLM application, MLOps/platform, data science, AI product & safety roles. Who this is for: AI/ML engineers, LLM engineers, data scientists, MLOps/platform engineers, AI product managers, applied researchers & safety/governance specialists targeting roles in the UK.

Why AI Careers in the UK Are Becoming More Multidisciplinary

Artificial intelligence is no longer a single-discipline pursuit. In the UK, employers increasingly want talent that can code and communicate, model and manage risk, experiment and empathise. That shift is reshaping job descriptions, training pathways & career progression. AI is touching regulated sectors, sensitive user journeys & public services — so the work now sits at the crossroads of computer science, law, ethics, psychology, linguistics & design. This isn’t a buzzword-driven change. It’s happening because real systems are deployed in the wild where people have rights, needs, habits & constraints. As models move from lab demos to products that diagnose, advise, detect fraud, personalise education or generate media, teams must align performance with accountability, safety & usability. The UK’s maturing AI ecosystem — from startups to FTSE 100s, consultancies, the public sector & universities — is responding by hiring multidisciplinary teams who can anticipate social impact as confidently as they ship features. Below, we unpack the forces behind this change, spotlight five disciplines now fused with AI roles, show what it means for UK job-seekers & employers, and map practical steps to future-proof your CV.