Data Scientist Lead - Chief Data Scientist within Payment Testing Technology

JPMorgan Chase & Co.
London
1 year ago
Applications closed

Related Jobs

View all jobs

Data Scientist: Lead DS Team Growth (Farnborough)

Senior Data Scientist — Lead Education Data & AI (Remote)

Senior Data Scientist - Lead Data Innovation (Hybrid)

Senior Data Scientist — Lead Data Systems & Insights

Senior Data Scientist — Lead Ethical AI for Public Impact

Senior Game Analytics Data Scientist — Lead Insights & ML

The Payment Testing Technology team serves the Commercial clients of JPMorgan. The team facilitates internal and client testing efforts to validate new payment product flows and updates to existing payment products in a production parallel environment. On a daily basis, our clients move hundreds of billions of dollars. Thus testing of payment flows is critical in ensuring seamless payments transactions for the clients. The team is responsible for test environment management and automation solutions for 60+ applications in the payments flow.

We currently serve 30,000 clients, some of which are the largest companies in the world. We provide an end to end payment testing experience for all payment products. We provide services to clients in all regions globally – Asia Pacific, Europe and Middle East, North America and Latin America.

We’re looking for someone with considerable experience manipulating data sets and building statistical models, has a Master’s or PhD in Statistics, Mathematics, Computer Science or another quantitative field.

Job Responsibilities:

Strong Programming skills using Python, Java, Java Scripts Strong in Statistics and probability: very well versed with Probability distributions Over and under sampling Bayesian and frequentist statistics Dimension reduction Linear regression Clustering Decision Trees Strong in Data wrangling and database management which involves process of cleaning and organizing complex data sets to make them easier to access and analyze. Manipulating the data to categorize it by patterns and trends, and to correct and input data values can be time-consuming but necessary to make data-driven decisions. Develop custom ML models and algorithms to apply to data sets and hands on experience in building various ML models like: Linear regression Logistic regression Naive Bayes Decision tree Random forest algorithm K-nearest neighbor (KNN) K means algorithm Ensemble models Simulation Scenario Analysis Knowledge and experience in statistical and data mining techniques: GLM/Regression, Random Forest, Boosting, Trees, text mining, etc. Mine and analyze data from company databases to drive optimization and improvement of product development, marketing techniques and business strategies. Develop company A/B testing framework and test model quality. Coordinate with different functional teams to implement models and monitor outcomes. Develop processes and tools to monitor and analyze model performance and data accuracy. Experience in Fine tuning the model

Required Qualifications:

Considerable experience manipulating data sets and building statistical models. Master’s or PhD in Statistics, Mathematics, Computer Science or another quantitative field

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write an AI Job Ad That Attracts the Right People

Artificial intelligence is now embedded across almost every sector of the UK economy. From fintech and healthcare to retail, defence and climate tech, organisations are competing for AI talent at an unprecedented pace. Yet despite the volume of AI job adverts online, many employers struggle to attract the right candidates. Roles are flooded with unsuitable applications, while highly capable AI professionals scroll past adverts that feel vague, inflated or disconnected from reality. In most cases, the issue isn’t a shortage of AI talent — it’s the quality of the job advert. Writing an effective AI job ad requires more care than traditional tech hiring. AI professionals are analytical, sceptical of hype and highly selective about where they apply. A poorly written advert doesn’t just fail to convert — it actively damages your credibility. This guide explains how to write an AI job ad that attracts the right people, filters out mismatches and positions your organisation as a serious employer in the AI space.

Maths for AI Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are a software engineer, data scientist or analyst looking to move into AI or you are a UK undergraduate or postgraduate in computer science, maths, engineering or a related subject applying for AI roles, the maths can feel like the biggest barrier. Job descriptions say “strong maths” or “solid fundamentals” but rarely spell out what that means day to day. The good news is you do not need a full maths degree worth of theory to start applying. For most UK roles like Machine Learning Engineer, AI Engineer, Data Scientist, Applied Scientist, NLP Engineer or Computer Vision Engineer, the maths you actually use again & again is concentrated in a handful of topics: Linear algebra essentials Probability & statistics for uncertainty & evaluation Calculus essentials for gradients & backprop Optimisation basics for training & tuning A small amount of discrete maths for practical reasoning This guide turns vague requirements into a clear checklist, a 6-week learning plan & portfolio projects that prove you can translate maths into working code.

Neurodiversity in AI Careers: Turning Different Thinking into a Superpower

The AI industry moves quickly, breaks rules & rewards people who see the world differently. That makes it a natural home for many neurodivergent people – including those with ADHD, autism & dyslexia. If you’re neurodivergent & considering a career in artificial intelligence, you might have been told your brain is “too much”, “too scattered” or “too different” for a technical field. In reality, many of the strengths that come with ADHD, autism & dyslexia map beautifully onto AI work – from spotting patterns in data to creative problem-solving & deep focus. This guide is written for AI job seekers in the UK. We’ll explore: What neurodiversity means in an AI context How ADHD, autism & dyslexia strengths match specific AI roles Practical workplace adjustments you can ask for under UK law How to talk about your neurodivergence during applications & interviews By the end, you’ll have a clearer picture of where you might thrive in AI – & how to set yourself up for success.