Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Scientist in AI and Analytics Team

Bank of England
Leeds
2 days ago
Create job alert
Overview

Data Scientist in AI and Analytics Team at Bank of England. Role requires expertise in Databricks, Azure, modern data science, and proven agile delivery experience.

Base pay range

This range is provided by Bank of England. Your actual pay will be based on your skills and experience — talk with your recruiter to learn more.

Key Responsibilities
  • Lead and contribute to the design, development, and deployment of advanced analytics solutions using Databricks and Azure, supporting supervisory and regulatory objectives.
  • Apply innovative data science techniques including NLP, RAG, and machine learning to extract insights from complex, multi-source regulatory data sets.
  • Collaborate with supervisors and technical team members to comprehend requirements and deliver solid, scalable solutions that enhance supervision.
  • Promote the implementation of guidelines in CI/CD, DevOps, and agile delivery, coordinating sprints and guiding team members in contemporary engineering workflows.
  • Build and maintain data pipelines and analytical workflows, ensuring data quality, security, and regulatory compliance.
  • Stay abreast of the latest developments in data science, cloud engineering, and financial supervision, sharing knowledge with technical and non-technical audiences.
  • Collaborate with end-users including supervisors of banks and insurers to understand needs and ensure tools meet those needs.
  • Demonstrable expertise in Databricks and Microsoft Azure (including Azure Data Factory, Databricks, and related services).
  • Strong programming skills in Python (and/or PySpark, SQL), with experience in building and deploying machine learning models in production environments.
  • Hands-on experience with NLP, RAG, and other advanced analytics techniques, ideally applied to financial or regulatory data.
  • Solid understanding of supervision, prudential regulation, and the data sets underpinning supervisory analytics.
  • Effective communication skills, collaborative team player, and ability to build impactful relationships with partners.
  • Experience steering delivery sprints, creating CI/CD pipelines, and working in agile, multi-functional teams.
  • Familiarity with RegTech and SupTech trends.
  • Interest in financial markets, regulation, and continuous professional development (e.g., Azure and Databricks certifications).
  • Demonstrable experience mentoring junior staff.
Inclusion

Our Approach to Inclusion

The Bank values diversity, equity and inclusion. We aim to reflect the society we serve and maintain monetary and financial stability through a diverse workforce.

Qualifications and Criteria

Minimum Criteria:

  • Databricks and Microsoft Azure expertise (including Azure Data Factory, Databricks, and related services).
  • Strong programming skills in Python (and/or PySpark, SQL), with production experience deploying ML models.

Essential Criteria:

  • Hands-on NLP, RAG, and other advanced analytics techniques, ideally with financial or regulatory data.
  • Solid understanding of supervision, prudential regulation, and supervisory analytics data sets.
  • Strong communication, teamwork, and stakeholder engagement skills.

Desirable Criteria:

  • Experience steering delivery sprints, CI/CD pipelines, and agile, multi-functional teams.
  • Familiarity with RegTech and SupTech trends.
  • Interest in financial markets and regulation; ongoing professional development (e.g., Azure, Databricks certifications).
  • Mentoring experience for junior staff.
Salary and Benefits

Salary and benefits information: Leeds-based role with a salary range of £51,360 to £57,780. Flexible working, with part-time or job-sharing options. Comprehensive benefits package available, including pension, discretionary performance award, benefits allowance, annual leave, private medical insurance and income protection.

National Security Vetting

Employment is subject to the National Security Vetting clearance process (typically 6 to 12 weeks post offer) and additional Bank security checks in line with Bank policy. Details about vetting and data privacy are provided in the Bank’s Privacy Notice.

Immigration Sponsorship

The Bank is a UKVI-approved sponsor with responsibilities to comply with Immigration Rules. Eligibility for sponsorship will be considered on a case-by-case basis.

Application Process

Important: Please ensure you complete the work history section and answer ALL application questions fully. Applications are anonymised during screening. Include complete work history and detailed answers since these form a critical part of the initial selection process.

Closing date: This role closes on 31 October 2025.

Seniority
  • Entry level
Employment type
  • Full-time
Job function
  • Finance


#J-18808-Ljbffr

Related Jobs

View all jobs

Data Scientist in AI and Analytics Team

Data Scientist

Data Scientist

Data Scientist

Principal Data Scientist

Data Scientist - Life Sciences

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Why AI Careers in the UK Are Becoming More Multidisciplinary

Artificial intelligence is no longer a single-discipline pursuit. In the UK, employers increasingly want talent that can code and communicate, model and manage risk, experiment and empathise. That shift is reshaping job descriptions, training pathways & career progression. AI is touching regulated sectors, sensitive user journeys & public services — so the work now sits at the crossroads of computer science, law, ethics, psychology, linguistics & design. This isn’t a buzzword-driven change. It’s happening because real systems are deployed in the wild where people have rights, needs, habits & constraints. As models move from lab demos to products that diagnose, advise, detect fraud, personalise education or generate media, teams must align performance with accountability, safety & usability. The UK’s maturing AI ecosystem — from startups to FTSE 100s, consultancies, the public sector & universities — is responding by hiring multidisciplinary teams who can anticipate social impact as confidently as they ship features. Below, we unpack the forces behind this change, spotlight five disciplines now fused with AI roles, show what it means for UK job-seekers & employers, and map practical steps to future-proof your CV.

AI Team Structures Explained: Who Does What in a Modern AI Department

Artificial Intelligence (AI) and Machine Learning (ML) are no longer confined to research labs and tech giants. In the UK, organisations from healthcare and finance to retail and logistics are adopting AI to solve problems, automate processes, and create new products. With this growth comes the need for well-structured teams. But what does an AI department actually look like? Who does what? And how do all the moving parts come together to deliver business value? In this guide, we’ll explain modern AI team structures, break down the responsibilities of each role, explore how teams differ in startups versus enterprises, and highlight what UK employers are looking for. Whether you’re an applicant or an employer, this article will help you understand the anatomy of a successful AI department.

Why the UK Could Be the World’s Next AI Jobs Hub

Artificial Intelligence (AI) has rapidly moved from research labs into boardrooms, classrooms, hospitals, and homes. It is already reshaping economies and transforming industries at a scale comparable to the industrial revolution or the rise of the internet. Around the world, countries are competing fiercely to lead in AI innovation and reap its economic, social, and strategic benefits. The United Kingdom is uniquely positioned in this race. With a rich heritage in computing, world-class universities, forward-thinking government policy, and a growing ecosystem of startups and enterprises, the UK has many of the elements needed to become the world’s next AI hub. Yet competition is intense, particularly from the United States and China. Success will depend on how effectively the UK can scale its strengths, close its gaps, and seize opportunities in the years ahead. This article explores why the UK could be the world’s next global hub for artificial intelligence, what challenges it must overcome, and what this means for businesses, researchers, and job seekers.