Data Scientist II

FactSet
London
2 days ago
Create job alert

Responsibilities

:

Manage and conduct data analysis and machine learning methodologies independently. This could involve running experiments, creating models, and interpreting results.

Access data from various sources and prepare it for analysis. Handle cleaning of complex datasets by identifying, addressing, and resolving issues related to quality and integrity.

Create and manage git repositories efficiently. Write clean, efficient, and reusable code adhering to best practices. Proficiency in unit testing, code profiling and cloud computing.

Work collaboratively with the data science team and other stakeholders. Communicate effectively about complex tasks, projects and insights generated from data. Present findings in a comprehensible manner to both technical and non-technical audiences.


Technology Learning Opportunities:
FactSet is committed to invest into Career development of all the Engineers to upskill, or re-skill based on individual interests, Project priorities and offers:

Licenses for learning resources like Pluralsight

Reimbursement of Technology Certification Fees (Azure, AWS or relevant Technologies)

Paid Leave for Certification Exam preparation (In addition to Casual Leaves and Privilege Leaves)

Vibrant Technology Communities that organize Internal programs, technology symposiums, Guest lectures by internal and external experts.


Requirements:

We are seeking a results-oriented person with at leastthree yearsof experience full-time Industry work in

Understanding of machine learning techniques and data processing

Proficiency in relevant programming languages (e.g. Python)

Ability to effectively manage git repositories and experience with cloud computing platforms

Expertise in accessing, cleaning, processing, and handling complex data for analysis

Excellent problem-solving skills and ability to design and execute advanced experiments testing hypotheses

Strong communication skills for effectively presenting findings to stakeholders and closely collaborating with team members

Experience with unit testing, code profiling, and object-oriented programming

Ability to work on multiple projects simultaneously and adapt to dynamic work environments

Experience with Big Data platforms like Hadoop or Spark and knowledge of SQL is a plus.

Proficiency with statistical programming and data visualization tools is highly desirable

Continual learning attitude, with a focus on enhancing both technical and soft skills

Company Overview:

FactSet (NYSE:FDS | NASDAQ:FDS) helps the financial community to see more, think bigger, and work better. Our digital platform and enterprise solutions deliver financial data, analytics, and open technology to more than 8,200 global clients, including over 200,000 individual users. Clients across the buy-side and sell-side, as well as wealth managers, private equity firms, and corporations, achieve more every day with our comprehensive and connected content, flexible next-generation workflow solutions, and client-centric specialized support. As a member of the S&P 500, we are committed to sustainable growth and have been recognized among the Best Places to Work in 2023 by Glassdoor as a Glassdoor Employees’ Choice Award winner. Learn more at and follow us on and .

Related Jobs

View all jobs

Data Scientist II

Data Scientist II

Data Scientist II

Data Scientist II (Level 5), Alexa Comms

DATA SCIENTIST

Applied Scientist II (Machine Learning), ITA - Automated Performance Evaluation

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for AI Jobs (With Real GitHub Examples)

In the fast-evolving world of artificial intelligence (AI), an impressive portfolio of projects can act as your passport to landing a sought-after role. Even if you’ve aced interviews in the past, employers in AI and machine learning (ML) are increasingly asking candidates to demonstrate hands-on experience through the projects they’ve built and shared online. This is because practical ability often speaks volumes about your suitability for a role—far more than any exam or certification alone could. In this article, we’ll explore how to build an outstanding AI portfolio that catches the eye of recruiters and hiring managers, including: Why an AI portfolio is crucial for job seekers. How to choose AI projects that align with your target roles. Specific project ideas and real GitHub examples to help you stand out. Best practices for showcasing your work, from writing clear READMEs to using Jupyter notebooks effectively. Tips on structuring your GitHub so that employers can instantly see your value. Moreover, we’ll discuss how you can use your portfolio to connect with top employers in AI, with a handy link to our CV-upload page on Artificial Intelligence Jobs for when you’re ready to apply. By the end, you’ll have a clear roadmap to building a portfolio that will help secure interviews—and the AI job—of your dreams.

AI Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

In today's competitive AI job market, nailing a technical interview can be the difference between landing your dream role and getting lost in the crowd. Whether you're looking to break into machine learning, deep learning, NLP (Natural Language Processing), or data science, your problem-solving skills and system design expertise are certain to be put to the test. AI‑related job interviews typically involve a range of coding challenges, algorithmic puzzles, and system design questions. You’ll often be asked to delve into the principles of machine learning pipelines, discuss how to optimise large-scale systems, and demonstrate your coding proficiency in languages like Python, C++, or Java. Adequate preparation not only boosts your confidence but also reduces the likelihood of fumbling through unfamiliar territory. If you’re actively seeking positions at major tech companies or innovative AI start-ups, then check out www.artificialintelligencejobs.co.uk for some of the latest vacancies in the UK. Meanwhile, this blog post will guide you through 30 real coding & system-design questions you’re likely to encounter during your AI job interview. This list is designed to help you practise, anticipate typical question patterns, and stay ahead of the competition. By reading through each question and thinking about the possible approaches, you’ll sharpen your problem-solving skills, time management, and critical thinking. Each question covers fundamental concepts that employers regularly test, ensuring you’re well-equipped for success. Let’s dive right in.

Negotiating Your AI Job Offer: Equity, Bonuses & Perks Explained

Artificial intelligence (AI) has proven itself to be one of the most transformative forces in today’s business world. From smart chatbots in customer service to predictive analytics in finance, AI technologies are reshaping how organisations operate and innovate. As the demand for AI professionals grows, so does the complexity of compensation packages. If you’re a mid‑senior AI professional, you’ve likely seen job offers that include far more than just a base salary—think equity, bonuses, and a range of perks designed to entice you into joining or staying with a company. For many, the focus remains squarely on salary. While that’s understandable—after all, your monthly take‑home pay is what covers day-to-day expenses—limiting your negotiations to salary alone can leave considerable value on the table. From stock options in ambitious startups to sign‑on bonuses that ‘buy you out’ of your current contract, modern AI job offers often include elements that can significantly boost your long-term wealth and job satisfaction. This article aims to shed light on the full scope of AI compensation—specifically focusing on how equity, bonuses, and perks can enhance (or sometimes detract from) the overall value of your package. We’ll delve into how these elements work in practice, what to watch out for, and how to navigate the negotiation process effectively. Our goal is to provide mid‑senior AI professionals with the insights and tools to land a holistic compensation deal that accurately reflects their technical expertise, leadership potential, and strategic importance in this fast-moving field. Whether you’re eyeing a leadership role in machine learning at an established tech giant, or you’re considering a pioneering position at a disruptive AI startup, the knowledge in this guide will help you weigh the merits of base salary alongside the potential riches—and risks—of equity, bonuses, and other benefits. By the end, you’ll have a clearer sense of how to align your compensation with both your immediate lifestyle needs and long-term career aspirations.