Data Scientist - Growth & Strategic Finance

Wise
London
10 months ago
Applications closed

Related Jobs

View all jobs

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Company Description

Wise is a global technology company, building the best way to move and manage the world’s money.
Min fees. Max ease. Full speed.

Whether people and businesses are sending money to another country, spending abroad, or making and receiving international payments, Wise is on a mission to make their lives easier and save them money.

As part of our team, you will be helping us create an entirely new network for the world's money.
For everyone, everywhere.

More about and .

Job Description

We’re looking for a Data Scientist to join our growing Growth & Strategic Finance Team in London. 

This role is a unique opportunity to work behind the scenes of company transactions, understand how we grow and at the same time provide our customers with the seamless service they deserve. What you build will have a direct impact on and millions of our customers.

We are seeking a skilled and detail-oriented Data Scientist to join our Financial Planning and Analysis (FP&A) team. This role will drive data analytics, build predictive models, and leverage machine learning to support strategic decision-making across the whole company. 

As a member of the FP&A team, you will partner closely with finance, operations, and product teams to uncover insights, forecast trends, and identify areas for operational efficiency and revenue growth. This position offers a unique opportunity to influence business strategy by transforming complex datasets into actionable insights, enabling data-driven decision-making across the organisation.

Here’s how you’ll be contributing:

Data Analysis and Visualization

Collect, clean, and process large financial and operational datasets from multiple sources.

Develop and maintain interactive dashboards, reports, and visualisations to provide clear and actionable insights for FP&A stakeholders.

Leverage statistical methods to analyse trends, measure business performance, and assess financial impacts.

Predictive Modeling & Forecasting

Design and build predictive models and machine learning algorithms to forecast key financial metrics, including revenue, expenses, profitability, and cash flow. 

Develop scenario analyses and sensitivity models to support budgeting, forecasting, and long-term financial planning processes.

Work with finance team members to embed models within FP&A processes, improving forecasting accuracy and decision-making capabilities.

Operational Efficiency & Automation

Identify and implement automation opportunities within data collection, reporting, and financial planning processes.

Build data pipelines and improve data infrastructure, ensuring that accurate and timely data is accessible.

Data Quality & Governance

Ensure data integrity and accuracy by implementing robust data validation techniques.

Train and educate team members on best practices for data usage and reporting.

Strategic Insights and Business Impact

Perform ad-hoc analyses to provide actionable insights for senior leadership on specific business questions or strategic initiatives.

Collaborate closely with cross-functional teams to understand business needs, translate them into analytical questions, and deliver insights that drive business performance.

Communicate findings and recommendations in a clear, concise manner to both technical and non-technical audiences.

A bit about you: 

Demonstrated experience building and deploying machine learning models in a business environment. Experience with financial modelling, forecasting, and scenario analysis is a plus

Strong Python knowledge and software engineering skills. Ability to read through code. Demonstrable experience collaborating with engineering and analytics;

A strong product mindset with the ability to work independently in a cross-functional and cross-team environment;

Great communication and presentation skills and ability to get the point across to non-technical individuals;

Strong problem solving skills with the ability to help refine problem statements and figure out how to solve them.

Additional Information

For everyone, everywhere. We're people building money without borders — without judgement or prejudice, too. We believe teams are strongest when they are diverse, equitable and inclusive.

We're proud to have a truly international team, and we celebrate our differences.
Inclusive teams help us live our values and make sure every Wiser feels respected, empowered to contribute towards our mission and able to progress in their careers.

If you want to find out more about what it's like to work at Wise visit .

Keep up to date with life at Wise by following us on and .

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.

How to Write an AI Job Ad That Attracts the Right People

Artificial intelligence is now embedded across almost every sector of the UK economy. From fintech and healthcare to retail, defence and climate tech, organisations are competing for AI talent at an unprecedented pace. Yet despite the volume of AI job adverts online, many employers struggle to attract the right candidates. Roles are flooded with unsuitable applications, while highly capable AI professionals scroll past adverts that feel vague, inflated or disconnected from reality. In most cases, the issue isn’t a shortage of AI talent — it’s the quality of the job advert. Writing an effective AI job ad requires more care than traditional tech hiring. AI professionals are analytical, sceptical of hype and highly selective about where they apply. A poorly written advert doesn’t just fail to convert — it actively damages your credibility. This guide explains how to write an AI job ad that attracts the right people, filters out mismatches and positions your organisation as a serious employer in the AI space.

Maths for AI Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are a software engineer, data scientist or analyst looking to move into AI or you are a UK undergraduate or postgraduate in computer science, maths, engineering or a related subject applying for AI roles, the maths can feel like the biggest barrier. Job descriptions say “strong maths” or “solid fundamentals” but rarely spell out what that means day to day. The good news is you do not need a full maths degree worth of theory to start applying. For most UK roles like Machine Learning Engineer, AI Engineer, Data Scientist, Applied Scientist, NLP Engineer or Computer Vision Engineer, the maths you actually use again & again is concentrated in a handful of topics: Linear algebra essentials Probability & statistics for uncertainty & evaluation Calculus essentials for gradients & backprop Optimisation basics for training & tuning A small amount of discrete maths for practical reasoning This guide turns vague requirements into a clear checklist, a 6-week learning plan & portfolio projects that prove you can translate maths into working code.