National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Data Scientist - Fraud

LexisNexis Risk Solutions
Slough
3 weeks ago
Applications closed

Related Jobs

View all jobs

Data Scientist

Data Scientist - AI / ML, Python, Scripting, Cyber Security

Data Scientist - Inside IR35 contract

Data Scientist

Data Scientist - Commodities

Data Scientist

About the business:LexisNexis Risk Solutions is the essential partner in the assessment of risk. Within our Business Services vertical, we offer a multitude of solutions focused on helping businesses of all sizes drive higher revenue growth, maximize operational efficiencies, and improve customer experience. Our solutions help our customers solve difficult problems in the areas of Anti-Money Laundering/Counter Terrorist Financing, Identity Authentication & Verification, Fraud and Credit Risk mitigation and Customer Data Management. You can learn more about LexisNexis Risk at the link below, https://risk.lexisnexis.com


About the team:You will be part of a team who use global data from the largest real-time fraud detection platform to craft solutions for our enterprise customers.


About the role:Your experience with data analysis, statistical modelling, and machine learning will lead to immediate real-world impact in the form of lower customer friction, reduced fraud losses and as a result, increased customer profitability. You’ll leverage a real-time platform analysing billions of transactions per month for some of the largest companies operating in Financial Services, Insurance, e-Commerce, and On-Demand Services. These tools will allow you to attain a unique perspective of the Internet, and every persona connected to it. On top of driving innovation projects, you’ll be continually collaborating with internal product and engineering teams, customer-facing account teams, and external business leaders and risk managers. The comprehensive models you build will go head-to-head against some of the most motivated attackers in the world to protect billions in revenue.


Responsibilities:

  • Scoping, developing, and implementing machine learning or rule-based models following best practice, to banking model governance standards
  • Using your strong knowledge of SQL and Python plus quantitative skills to define features that capture evolving fraudster behaviours
  • Develop internal tools to streamline the model training pipeline and analytics workflows
  • Applying your curiosity and problem-solving skills to transform uncertainty into value-add opportunities
  • Using your strong attention to detail and ability to craft a story through data, delivering industry-leading presentations for external and executive audiences
  • Building an extensive knowledge of cybercrime – account takeover, scams, social engineering, Card Not Present (CNP) fraud, money laundering and mule fraud etc
  • Employing your multi-tasking and prioritisation skills to excel in a fast-paced environment with frequently changing priorities


Requirements:

  • Experience in a data science role, ideally within the fraud, risk, or payments domain
  • Proficiency in Python and SQL (BI tools such as SuperSet, Tableau or PowerBI is a bonus)
  • Hands-on experience in machine learning model development, evaluation, and production deployment, with familiarity in MLOps principles to build scalable and standardised workflows and implement effective ML monitoring systems
  • Proven ability to create polished presentations and effectively communicate insights to customers with attention to detail
  • Have extensive multi-tasking and prioritisation skills. Needs to excel in fast paced environment with frequently changing priorities


Learn more about the LexisNexis Risk team and how we work here

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

LinkedIn Profile Checklist for AI Jobs: 10 Tweaks That Triple Recruiter Views

In today’s fiercely competitive AI job market, simply having a LinkedIn profile isn’t enough. Recruiters and hiring managers routinely scout for top talent in machine learning, data science, natural language processing, computer vision and beyond—sometimes before roles are even posted. With hundreds of applicants vying for each role, you need a profile that’s optimised for search, speaks directly to AI-specific skills, and showcases measurable impact. By following this step-by-step LinkedIn for AI jobs checklist, you’ll make ten strategic tweaks that can triple recruiter views and position you as a leading AI professional. Whether you’re a fresh graduate aiming for your first AI position or a seasoned expert targeting a senior role, these actionable changes will ensure your profile stands out in feeds, search results and recruiter queues. Let’s dive in.

Part-Time Study Routes That Lead to AI Jobs: Evening Courses, Bootcamps & Online Masters

Artificial intelligence (AI) is reshaping industries at an unprecedented pace. From automating mundane tasks in finance to driving innovation in healthcare diagnostics, the demand for AI-skilled professionals is skyrocketing. In the United Kingdom alone, AI is forecast to deliver over £400 billion to the economy by 2030 and generate millions of new jobs across sectors. Yet, for many ambitious professionals, taking time away from work to upskill can feel like an impossible ask. Thankfully, part-time learning options have proliferated: evening courses, intensive bootcamps and flexible online master’s programmes empower you to learn AI while working. This comprehensive guide explores every route—from short tasters to deep-dive MScs—showcasing providers, course formats, funding options and practical tips. Whether you’re a career changer, a busy manager or a self-taught developer keen to go further, you’ll discover a pathway to fit your schedule, budget and goals.