Data Scientist, Data Intelligence, Professional Services GCR

Amazon
London
4 days ago
Create job alert

AWS Sales, Marketing, and Global Services (SMGS) is responsible for driving revenue, adoption, and growth from the largest and fastest growing small- and mid-market accounts to enterprise-level customers including public sector. The AWS Global Support team interacts with leading companies and believes that world-class support is critical to customer success. AWS Support also partners with a global list of customers that are building mission-critical applications on top of AWS services.

The Amazon Web Services Professional Services team is looking for a Data Scientist, this role plays a crucial role in delivering the generative artificial intelligence (GenAI) solutions for our clients. This position requires a deep understanding of machine learning, natural language processing, and generative models, combined with problem-solving skills and a passion for innovation.

Key job responsibilities
1. Generative AI Model Development:
-Design and develop generative AI models, including language models, image generation models, and multimodal models.
-Explore and implement advanced techniques in areas such as transformer architectures, attention mechanisms, and self-supervised learning.
-Conduct research and stay up-to-date with the latest advancements in the field of generative AI.

2. Data Acquisition and Preprocessing:
-Identify and acquire relevant data sources for training generative AI models.
-Develop robust data preprocessing pipelines, ensuring data quality, cleanliness, and compliance with ethical and regulatory standards.
-Implement techniques for data augmentation, denoising, and domain adaptation to enhance model performance.

3. Model Training and Optimization:
-Design and implement efficient training pipelines for large-scale generative AI models.
-Leverage distributed computing resources, such as GPUs and cloud platforms, for efficient model training.
-Optimize model architectures, hyperparameters, and training strategies to achieve superior performance and generalization.

4. Model Evaluation and Deployment:
-Develop comprehensive evaluation metrics and frameworks to assess the performance, safety, and bias of generative AI models.
-Collaborate with cross-functional teams to ensure the successful deployment and integration of generative AI models into client solutions.

5. Collaboration and Knowledge Sharing:
-Collaborate with data engineers, software engineers, and subject matter experts to develop innovative solutions leveraging generative AI.
-Contribute to the firm's thought leadership by presenting at conferences, and participating in industry events.

About the team
AWS Sales, Marketing, and Global Services (SMGS) is responsible for driving revenue, adoption, and growth from the largest and fastest growing small- and mid-market accounts to enterprise-level customers including public sector. The AWS Global Support team interacts with leading companies and believes that world-class support is critical to customer success. AWS Support also partners with a global list of customers that are building mission-critical applications on top of AWS services.

About AWS

Diverse Experiences
AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying.

Why AWS?
Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses.

Inclusive Team Culture
Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness.

Mentorship & Career Growth
We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.

Work/Life Balance
We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.

AWS is committed to a diverse and inclusive workplace to deliver the best results for our customers. Amazon is an equal opportunity employer and does not discriminate on the basis of race, national origin, gender, gender identity, sexual orientation, protected veteran status, disability, age, or other legally protected status; we celebrate the diverse ways we work. For individuals with disabilities who would like to request an accommodation, please let us know and we will connect you to our accommodation team.

- Master's or Ph.D. degree in Computer Science, Machine Learning, Artificial Intelligence, or a related quantitative field.
- 4+ years of experience in developing and deploying machine learning models, with a strong focus on generative AI techniques.
- Proficiency in programming languages such as Python, PyTorch, or TensorFlow, and experience with deep learning frameworks.
- Strong background in natural language processing, computer vision, or multimodal learning.
- Ability to communicate technical concepts to both technical and non-technical audiences.

- Experience with large language models, such as Claude, GPT, BERT, or T5.
- Familiarity with reinforcement learning techniques and their applications in generative AI.
- Understanding of ethical AI principles, bias mitigation techniques, and responsible AI practices.
- Experience with cloud computing platforms (e.g., AWS, GCP, Azure) and distributed computing frameworks (e.g., Apache Spark, Dask).
- Strong problem-solving, analytical, and critical thinking skills.
- Strong communication, collaboration, and leadership skills.

Our inclusive culture empowers Amazonians to deliver the best results for our customers. If you have a disability and need a workplace accommodation or adjustment during the application and hiring process, including support for the interview or onboarding process, please visit https://amazon.jobs/content/en/how-we-hire/accommodations for more information. If the country/region you’re applying in isn’t listed, please contact your Recruiting Partner.

#J-18808-Ljbffr

Related Jobs

View all jobs

Sr. Data Scientist / Machine Learning Engineer - GenAI & LLM London, United Kingdom

Data Scientist - Detection

Principal Data Scientist (Remote)

Principal Data Scientist - Remote

Principal Data Scientist (Remote)

Principal Data Scientist (Remote)

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for AI Jobs (With Real GitHub Examples)

In the fast-evolving world of artificial intelligence (AI), an impressive portfolio of projects can act as your passport to landing a sought-after role. Even if you’ve aced interviews in the past, employers in AI and machine learning (ML) are increasingly asking candidates to demonstrate hands-on experience through the projects they’ve built and shared online. This is because practical ability often speaks volumes about your suitability for a role—far more than any exam or certification alone could. In this article, we’ll explore how to build an outstanding AI portfolio that catches the eye of recruiters and hiring managers, including: Why an AI portfolio is crucial for job seekers. How to choose AI projects that align with your target roles. Specific project ideas and real GitHub examples to help you stand out. Best practices for showcasing your work, from writing clear READMEs to using Jupyter notebooks effectively. Tips on structuring your GitHub so that employers can instantly see your value. Moreover, we’ll discuss how you can use your portfolio to connect with top employers in AI, with a handy link to our CV-upload page on Artificial Intelligence Jobs for when you’re ready to apply. By the end, you’ll have a clear roadmap to building a portfolio that will help secure interviews—and the AI job—of your dreams.

AI Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

In today's competitive AI job market, nailing a technical interview can be the difference between landing your dream role and getting lost in the crowd. Whether you're looking to break into machine learning, deep learning, NLP (Natural Language Processing), or data science, your problem-solving skills and system design expertise are certain to be put to the test. AI‑related job interviews typically involve a range of coding challenges, algorithmic puzzles, and system design questions. You’ll often be asked to delve into the principles of machine learning pipelines, discuss how to optimise large-scale systems, and demonstrate your coding proficiency in languages like Python, C++, or Java. Adequate preparation not only boosts your confidence but also reduces the likelihood of fumbling through unfamiliar territory. If you’re actively seeking positions at major tech companies or innovative AI start-ups, then check out www.artificialintelligencejobs.co.uk for some of the latest vacancies in the UK. Meanwhile, this blog post will guide you through 30 real coding & system-design questions you’re likely to encounter during your AI job interview. This list is designed to help you practise, anticipate typical question patterns, and stay ahead of the competition. By reading through each question and thinking about the possible approaches, you’ll sharpen your problem-solving skills, time management, and critical thinking. Each question covers fundamental concepts that employers regularly test, ensuring you’re well-equipped for success. Let’s dive right in.

Negotiating Your AI Job Offer: Equity, Bonuses & Perks Explained

Artificial intelligence (AI) has proven itself to be one of the most transformative forces in today’s business world. From smart chatbots in customer service to predictive analytics in finance, AI technologies are reshaping how organisations operate and innovate. As the demand for AI professionals grows, so does the complexity of compensation packages. If you’re a mid‑senior AI professional, you’ve likely seen job offers that include far more than just a base salary—think equity, bonuses, and a range of perks designed to entice you into joining or staying with a company. For many, the focus remains squarely on salary. While that’s understandable—after all, your monthly take‑home pay is what covers day-to-day expenses—limiting your negotiations to salary alone can leave considerable value on the table. From stock options in ambitious startups to sign‑on bonuses that ‘buy you out’ of your current contract, modern AI job offers often include elements that can significantly boost your long-term wealth and job satisfaction. This article aims to shed light on the full scope of AI compensation—specifically focusing on how equity, bonuses, and perks can enhance (or sometimes detract from) the overall value of your package. We’ll delve into how these elements work in practice, what to watch out for, and how to navigate the negotiation process effectively. Our goal is to provide mid‑senior AI professionals with the insights and tools to land a holistic compensation deal that accurately reflects their technical expertise, leadership potential, and strategic importance in this fast-moving field. Whether you’re eyeing a leadership role in machine learning at an established tech giant, or you’re considering a pioneering position at a disruptive AI startup, the knowledge in this guide will help you weigh the merits of base salary alongside the potential riches—and risks—of equity, bonuses, and other benefits. By the end, you’ll have a clearer sense of how to align your compensation with both your immediate lifestyle needs and long-term career aspirations.