Data Scientist | Cambridge | Biotech (Drug Discovery)

Cambridge
1 year ago
Applications closed

Related Jobs

View all jobs

Data Scientist

Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Data Scientist

Data Scientist | Cambridge | Biotech (Drug Discovery)

We are driven by the mission to develop novel, targeted therapies for cancers with significant unmet needs, using cutting-edge computational methods and next-generation cancer models. Join us and be part of a team that is revolutionizing drug discovery.
Key Responsibilities:
Collaborate with cross-functional teams including biologists, chemists, and computational scientists to drive oncology drug discovery through data-driven insights.
Apply advanced statistical, machine learning, and computational techniques to analyze large-scale multi-omics, genomic, and clinical datasets, accelerating the identification of novel cancer targets and biomarkers.
Develop and optimize predictive models to identify therapeutic response patterns and enhance patient stratification for cancer clinical trials.
Build and implement scalable data pipelines and workflows for high-throughput drug screening and mechanistic studies.
Integrate internal and external datasets to generate actionable insights into cancer biology, drug mechanisms, and disease progression.
Present findings and data-driven insights to stakeholders, influencing drug development strategies.
Stay at the forefront of advancements in data science, machine learning, and computational biology to continuously bring innovation to the team.Key Qualifications:
PhD, MSc, or equivalent experience in data science, bioinformatics, computational biology, or a related field.
Proven experience applying data science and machine learning to biological or clinical datasets, ideally within oncology or drug discovery.
Proficiency in programming languages such as Python, R, and experience with data analysis libraries (e.g., batch, TensorFlow).
Strong understanding of statistical modeling, machine learning algorithms, and multi-omics data analysis (e.g., genomics, transcriptomics, proteomics).
Experience working with large-scale biological databases and integrating multi-modal datasets.
Excellent problem-solving skills and ability to work both independently and in a team-oriented environment.
Strong communication skills, with the ability to present complex data findings to both scientific and non-scientific audiences

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.