National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Data Scientist (AML)

Starling Bank
Cardiff
2 weeks ago
Create job alert

Starling is the UK’s first and leading digital bank on a mission to fix banking! Our vision is fast technology, fair service, and honest values. All at the tap of a phone, all the time.

We are about giving customers a new way to spend, save and manage their money while taking better care of the planet which has seen us become a multi-award winning bank that now employs over 2800 across five offices in London, Cardiff, Dublin, Southampton, and Manchester. Our journey started in 2014, and since then we have surpassed million accounts (and four account types!) with 350,000 business customers. We are a fully licensed UK bank but at the heart, we are a tech first company, enabling our platform to deliver brilliant products.

Our technologists are at the very heart of Starling and enjoy working in a fast-paced environment that is all about building things, creating new stuff, and disruptive technology that keeps us on the cutting edge of fintech. We operate a flat structure to empower you to make decisions regardless of what your primary responsibilities may be, innovation and collaboration will be at the core of everything you do. Help is never far away in our open culture, you will find support in your team and from across the business, we are in this together!

The way to thrive and shine within Starling is to be a self-driven individual and be able to take full ownership of everything around you: From building things, designing, discovering, to sharing knowledge with your colleagues and making sure all processes are efficient and productive to deliver the best possible results for our customers. Our purpose is underpinned by five Starling values: Listen, Keep It Simple, Do The Right Thing, Own It, and Aim For Greatness.

Hybrid Working

We have a Hybrid approach to working here at Starling - our preference is that you're located within a commutable distance of one of our offices so that we're able to interact and collaborate in person. In Technology, we're asking that you attend the office a minimum of 1 day per week.

Our Data Environment

Our Data teams are excited about the value of data within the business, powers our product decisions to improve things for our customers and enhance effective and agile decision making, regardless of what their primary tech stack may be. Hear from the team in our latest blogs or our case studies with Women in Tech.

We are looking for talented data professionals at all levels to join the team. We value people being engaged and caring about customers, caring about the code they write and the contribution they make to Starling. People with a broad ability to apply themselves to a multitude of problems and challenges, who can work across teams do great things here at Starling, to continue changing banking for good.

Ways of Working:

We value autonomy - you’ll be trusted to manage your own projects, drive modelling initiatives, and take ideas from concept to production You’ll be encouraged to propose new approaches and explore creative ways to detect and prevent fraud We debate and critique our ideas in a healthy, supportive team You’ll have the chance to shape both models and how we think about fraud detection as a wider team

Responsibilities:

You will be part of a team that builds, evaluates and deploys machine learning models to improve and automate decision making Collaborate with technical and non-technical teams to understand problems, explore data, and develop effective fraud prevention tools and solutions Design and maintain robust feature engineering pipelines for modelling, working closely with analytics engineering teams Contribute to the development of end-to-end machine learning workflows and help embed models into production systems Analyse transaction and behavioural data to identify trends, anomalies, and AML patterns

Requirements

Industry experience in data science or machine learning models, ideally in AML, financial crime, or a related domain Experience working with large-scale, high-dimensional, and heavily imbalanced datasets Excellent skills in Python and SQL Solid understanding of classification algorithms such as gradient boosting decision trees, including pros and cons of different model architectures Strong feature engineering skills and experience in transforming raw data into useful model inputs Effective communication skills and able to explain complex findings clearly to both technical and non-technical stakeholders Demonstrable experience deploying machine learning solutions in a production environment, and familiarity with version controls systems ( Git)

Desirables:

Experience with cloud-based ML infrastructure, particularly GCP (Vertex AI, BigQuery), or equivalent ( AWS, Azure) Exposure to orchestration tools such as Kubeflow pipelines or Airflow Familiarity with DBT or similar tools for modelling data in data warehouses Desire to build interpretable and explainable ML models (using techniques such as SHAP) Desire to quantify the level of fairness and bias machine learning models Enthusiasm for improving fraud detection systems and a proactive, problem-solving mindset

Interview process

Interviewing is a two way process and we want you to have the time and opportunity to get to know us, as much as we are getting to know you! Our interviews are conversational and we want to get the best from you, so come with questions and be curious. In general you can expect the below, following a chat with one of our Talent Team:

Stage 1 - 45 mins with one of the team Stage 2 - Take home challenge Stage 3 - 60 mins technical interview with two team members Stage 3 - 45 min final with an executive and a member of the people team

Benefits

33 days holiday (including public holidays, which you can take when it works best for you) An extra day’s holiday for your birthday Annual leave is increased with length of service, and you can choose to buy or sell up to five extra days off 16 hours paid volunteering time a year Salary sacrifice, company enhanced pension scheme Life insurance at 4x your salary & group income protection Private Medical Insurance with VitalityHealth including mental health support and cancer care. Partner benefits include discounts with Waitrose, Mr&Mrs Smith and Peloton Generous family-friendly policies Incentives refer a friend scheme Perkbox membership giving access to retail discounts, a wellness platform for physical and mental health, and weekly free and boosted perks Access to initiatives like Cycle to Work, Salary Sacrificed Gym partnerships and Electric Vehicle (EV) leasing

About us

You may be put off applying for a role because you don't tick every box. Forget that! While we can’t accommodate every flexible working request, we're always open to discussion. So, if you're excited about working with us, but aren’t sure if you're 100% there yet, get in touch anyway. We’re on a mission to radically reshape banking – and that starts with our brilliant team. Whatever came before, we’re proud to bring together people of all backgrounds and experiences who love working together to solve problems.

Related Jobs

View all jobs

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Science Placement Programme

Data Science Placement Programme

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Jobs UK 2025: 50 Companies Hiring Now

Bookmark this guide – we refresh it every quarter so you always know who’s really scaling their artificial‑intelligence teams. Artificial intelligence hiring has roared back in 2025. The UK’s boosted National AI Strategy funding, record‑breaking private investment (£18.1 billion so far) & a fresh wave of generative‑AI product launches mean employers are jockeying for data scientists, ML engineers, MLOps specialists, AI product managers, prompt engineers & applied researchers. Below are 50 organisations that have advertised UK‑based AI vacancies in the past eight weeks or formally announced growth plans. They’re grouped into five easy‑scan categories so you can jump straight to the kind of employer – & culture – that suits you. For each company you’ll find: Main UK hub Example live or recent vacancy Why it’s worth a look (tech stack, culture, mission) Use the internal links to browse current vacancies on ArtificialIntelligenceJobs.co.uk – or set up a free job alert so fresh roles land in your inbox.

Return-to-Work Pathways: Relaunch Your AI Career with Returnships, Flexible & Hybrid Roles

Stepping back into the workplace after a career break can feel like embarking on a whole new journey—especially in a cutting-edge field such as artificial intelligence (AI). For parents and carers, the challenge isn’t just refreshing your technical know-how but also securing a role that respects your family commitments. Fortunately, the UK’s tech sector now boasts a wealth of return-to-work programmes—from formal returnships to flexible and hybrid opportunities. These pathways are designed to bridge the gap, equipping you with refreshed skills, confidence and a supportive network. In this comprehensive guide, you’ll discover how to: Understand the booming demand for AI talent in the UK Leverage transferable skills honed during your break Overcome common re-entry challenges Build your AI skillset with targeted training Tap into returnship and re-entry programmes Find flexible, hybrid and full-time AI roles that suit your lifestyle Balance professional growth with caring responsibilities Master applications, interviews and networking Whether you’re returning after maternity leave, eldercare duties or another life chapter, this article will equip you with practical steps, resources and insider tips.

LinkedIn Profile Checklist for AI Jobs: 10 Tweaks That Triple Recruiter Views

In today’s fiercely competitive AI job market, simply having a LinkedIn profile isn’t enough. Recruiters and hiring managers routinely scout for top talent in machine learning, data science, natural language processing, computer vision and beyond—sometimes before roles are even posted. With hundreds of applicants vying for each role, you need a profile that’s optimised for search, speaks directly to AI-specific skills, and showcases measurable impact. By following this step-by-step LinkedIn for AI jobs checklist, you’ll make ten strategic tweaks that can triple recruiter views and position you as a leading AI professional. Whether you’re a fresh graduate aiming for your first AI position or a seasoned expert targeting a senior role, these actionable changes will ensure your profile stands out in feeds, search results and recruiter queues. Let’s dive in.