National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Data Scientist, Ad Fraud Detection, Traffic Quality ML...

Amazon
London
3 weeks ago
Applications closed

Related Jobs

View all jobs

Lead Data Scientist - Model Risk Management

Data Scientist

Data Scientist - Graduate

Junior Data Scientist – Quantitative Market Research (Agency Side)

Junior Data Scientist – Quantitative Market Research (Agency Side)

Senior Data Scientist - Consumer Behaviour – exciting ‘scale up’ proposition

Data Scientist, Ad Fraud Detection, Traffic Quality ML

Advertising at Amazon is a fast-growing multi-billion dollar business that spans across desktop, mobile and connected devices; encompasses ads on Amazon and a vast network of hundreds of thousands of third party publishers; and extends across US, EU and an increasing number of international geographies. One of the key focus areas is Traffic Quality where we endeavour to identify non-human and invalid traffic within programmatic ad sources, and weed them out to ensure a high quality advertising marketplace. We do this by building machine learning and optimization algorithms that operate at scale, and leverage nuanced features about user, context, and creative engagement to determine the validity of traffic. The challenge is to stay one step ahead by investing in deep analytics and developing new algorithms that address emergent attack vectors in a structured and scalable fashion. We are committed to building a long-term traffic quality solution that encompasses all Amazon advertising channels and provides industry leading traffic filtering leveraging GenAI and state-of-the-art deep learning techniques. Our systems preserve advertiser trust and saves them hundreds of millions of dollars of wasted spend.

A Data Scientist is responsible for delivering deep data-driven analyses with insights that drive the business. They would use a combination of analytics, data visualization and machine learning to identify gaps in current solutions as well as prototype new algorithms that close the gaps. The ideal candidate should have strong experience in dive deep analytics and data visualization, thorough knowledge of statistical techniques and strong breadth in machine learning. The candidate should also have good programming and design skills to implement machine learnings algorithms in practice on massive unstructured datasets.

BASIC QUALIFICATIONS

  • 3+ years of data scientist experience
  • 4+ years of data querying languages (e.g. SQL), scripting languages (e.g. Python) or statistical/mathematical software (e.g. R, SAS, Matlab, etc.) experience
  • 3+ years of machine learning/statistical modeling data analysis tools and techniques, and parameters that affect their performance experience
  • Experience applying theoretical models in an applied environment

    PREFERRED QUALIFICATIONS

  • Experience with data scripting languages (e.g. SQL, Python, R etc.) or statistical/mathematical software (e.g. R, SAS, or Matlab)
  • Experience with big data: processing, filtering, and presenting large quantities (100K to Millions of rows) of data
  • Experience in a ML or data scientist role with a large technology company
  • Experience in Computational Advertising

    Our inclusive culture empowers Amazonians to deliver the best results for our customers. If you have a disability and need a workplace accommodation or adjustment during the application and hiring process, including support for the interview or onboarding process, please visithttps://amazon.jobs/content/en/how-we-hire/accommodationsfor more information. If the country/region you’re applying in isn’t listed, please contact your Recruiting Partner.

    Amazon is an equal opportunity employer and does not discriminate on the basis of protected veteran status, disability, or other legally protected status.

    #J-18808-Ljbffr
National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

10 AI Recruitment Agencies in the UK You Should Know (2025 Job‑Seeker Guide)

Generative‑AI hype has translated into real hiring: Lightcast recorded +57 % year‑on‑year growth in UK adverts mentioning “machine learning”, “LLM” or “gen‑AI” during Q1 2025. Yet supply still lags. Roughly 18,000 core AI professionals work in the UK, but monthly live vacancies hover around 1,400–1,600. That mismatch makes specialist recruiters invaluable—opening stealth vacancies, advising on salary bands and fast‑tracking interview loops. But many tech agencies sprinkle “AI” on their website without an active desk. To save you time, we vetted 50 + consultancies and kept only those with: A registered UK head office (verified via Companies House). A named AI/Machine‑Learning or Data practice.

AI Jobs Skills Radar 2026: Emerging Frameworks, Languages & Tools to Learn Now

As the UK’s AI sector accelerates towards a £1 trillion tech economy, the job landscape is rapidly evolving. Whether you’re an aspiring AI engineer, a machine learning specialist, or a data-driven software developer, staying ahead of the curve means more than just brushing up on Python. You’ll need to master a new generation of frameworks, languages, and tools shaping the future of artificial intelligence. Welcome to the AI Jobs Skills Radar 2026—your definitive guide to the emerging AI tech stack that employers will be looking for in the next 12–24 months. Updated annually for accuracy and relevance, this guide breaks down the top tools, frameworks, platforms, and programming languages powering the UK’s most in-demand AI careers.

How to Find Hidden AI Jobs in the UK Using Professional Bodies like BCS, IET & the Turing Society

Stop Scrolling Job Boards and Start Tapping the Real AI Market Every week a new headline announces millions of pounds flowing into artificial-intelligence research, defence initiatives, or health-tech pilots. Read the news and you could be forgiven for thinking that AI vacancies must be everywhere—just grab your laptop, open LinkedIn, and pick a role. Yet anyone who has hunted seriously for an AI job in the United Kingdom knows the truth is messier. A large percentage of worthwhile AI positions—especially specialist or senior posts—never appear on public boards. They emerge inside university–industry consortia, defence labs, NHS data-science teams, climate-tech start-ups, and venture studios. Most are filled through referral or conversation long before a recruiter drafts a formal advert. If you wait for a vacancy link, you are already at the back of the queue. The surest way to beat that dynamic is to embed yourself in the professional bodies and grassroots communities where the work is conceived. The UK has a dense network of such organisations: the Chartered Institute for IT (BCS); the Institution of Engineering and Technology (IET) with its Artificial Intelligence Technical Network; the Alan Turing Institute and its student-driven Turing Society; the Royal Statistical Society (RSS); the Institution of Mechanical Engineers (IMechE) and its Mechatronics, Informatics & Control Group; public-funding engines like UK Research and Innovation (UKRI); and an ecosystem of Slack channels and Meetup groups that trade genuine, timely intel. This article is a practical, step-by-step guide to using those networks. You will learn: Why professional bodies matter more than algorithmic job boards Exactly which special-interest groups (SIGs) and technical networks to join How to turn CPD events into informal interviews How to monitor grant databases so you hear about posts months before they exist Concrete scripts, portfolio tactics, and outreach rhythms that convert visibility into offers Follow the playbook and you move from passive applicant to insider—the colleague who hears about a role before it is written down.